The European Physical Journal Special Topics

, Volume 188, Issue 1, pp 61–72 | Cite as

Advances in single crystal growth and annealing treatment of electron-doped HTSC

  • M. Lambacher
  • T. Helm
  • M. Kartsovnik
  • A. ErbEmail author
Regular Article


High quality electron-doped HTSC single crystals of Pr2−xCexCuO4+δ and Nd2−xCexCuO4+δ have been successfully grown by the container-free traveling solvent floating zone technique. The optimally doped Pr2−xCexCuO4+δ and Nd2−xCexCuO4+δ crystals have transition temperatures T c of 25 K and 23.5 K, respectively, with a transition width of less than 1 K. We found a strong dependence of the optimal growth parameters on the Ce content x. We discuss the optimization of the post-growth annealing treatment of the samples, the doping extension of the superconducting dome for both compounds as well as the role of excess oxygen. The absolute oxygen content of the as-grown crystals is determined from thermogravimetric experiments and is found to be ≥ 4.0. This oxygen surplus is nearly completely removed by a post-growth annealing treatment. The reduction process is reversible as demonstrated by magnetization measurements. In as-grown samples the excess oxygen resides on the apical site O(3). This apical oxygen has nearly no doping effect, but rather influences the evolution of superconductivity by inducing additional disorder in the CuO2 layers. The very high crystal quality of Nd2−xCexCuO4+δ is particularly manifest in magnetic quantum oscillations observed on several samples at different doping levels. They provide a unique opportunity of studying the Fermi surface and its dependence on the carrier concentration in the bulk of the crystals.


Fermi Surface European Physical Journal Special Topic Transition Curve High Quality Single Crystal Underdoped Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Tokura, H. Takagi, S. Uchida, Nature 337, 345 (1989)CrossRefADSGoogle Scholar
  2. 2.
    A. Erb, E. Walker, R. Fluekiger, Physica C 258, 9 (1996)CrossRefADSGoogle Scholar
  3. 3.
    A.N. Maljuk, A.A. Jokhov, I.G. Naumenko, I.K. Bdikin, S.A. Zver’kov, G.A. Emel’chenko, Physica C 329, 51 (2000)CrossRefADSGoogle Scholar
  4. 4.
    K. Oka, H. Unoki, Jpn. J. Appl. Phys. 28, L937 (1989)CrossRefADSGoogle Scholar
  5. 5.
    K. Kurahashi, H. Matsushita, M. Fujita, K. Yamada, J. Phys. Soc. Jpn. 71, 910 (2002)CrossRefADSGoogle Scholar
  6. 6.
    M. Matsuura, P. Dai, H.J. Kang, J.W. Lynn, D.N. Argyriou, K. Prokes, Y. Onose, Y. Tokura, Phys. Rev. B 68, 144503 (2003)CrossRefADSGoogle Scholar
  7. 7.
    P.K. Mang, S. Larochelle, A. Mehta, O.P. Vajk, A.S. Erickson, L. Lu, W.J.L. Buyers, A.F. Marshall, Phys. Rev. B 70, 094507 (2004)CrossRefADSGoogle Scholar
  8. 8.
    T. Uefuji, S. Kuroshima, M. Fujita, K. Zamada, Physica C 392–396, 189 (2003)CrossRefGoogle Scholar
  9. 9.
    H.J. Kang, P. Dai, H.A. Mook, D.N. Argyriou, V. Sikolenko, J.W. Lynn, Y. Kurita, S. Seiki, Y. Ando, Phys. Rev. B 71, 214512 (2005)CrossRefADSGoogle Scholar
  10. 10.
    H. Shibata, K. Oka, S. Kashiwaya, H. Yamaguchi, Physica C 357, 363 (2001)CrossRefADSGoogle Scholar
  11. 11.
    J.S. Kim, D.R. Gaskell, Physica C 209, 381 (1993)CrossRefADSGoogle Scholar
  12. 12.
    J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 751, 12911 (1995)CrossRefADSGoogle Scholar
  13. 13.
    J.S. Higgins, Y. Dagan, M.C. Barr, B.D. Weaver, R.L. Greene, Phys. Rev. B 73, 104510 (2006)CrossRefADSGoogle Scholar
  14. 14.
    P.G. Radaelli, J.D. Jorgensen, A.J. Schultz, J.L. Peng, R.L. Greene, Phys. Rev. B 49, 15322 (1994)CrossRefADSGoogle Scholar
  15. 15.
    P. Richard, G. Riou, I. Hetel, S. Jandl, M. Poirier, P. Fournier, Phys. Rev. B 70, 0645131 (2004)Google Scholar
  16. 16.
    T. Helm, M.V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, Gross, Phys. Rev. Lett. 103, 57002 (2009)CrossRefGoogle Scholar
  17. 17.
    D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)Google Scholar
  18. 18.
    S. Massidda, N. Hamada, J. Yu, A.J. Freeman, Physica C 157, 571 (1989)CrossRefADSGoogle Scholar
  19. 19.
    H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, K. Yamada, Phys. Rev. B 75, 224514 (2007)CrossRefADSGoogle Scholar
  20. 20.
    P.N. Armitage, F. Ronning, D.H. Lu, C. Kim, A. Damascelli, K.M. Shen, D.L. Feng, H. Eisaki, Z.-H. Shen, P.K. Mang, et al., Phys. Rev. Lett. 88, 257001 (2002)CrossRefADSGoogle Scholar
  21. 21.
    J. Eun, X. JiaS. Chakravarty(unpublished) [Arxiv:0912.0728]Google Scholar
  22. 22.
    N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, Nature 447, 565 (2007)CrossRefADSGoogle Scholar
  23. 23.
    C. Jaudet, D. Vignolles, A. Audouard, J. Levallois, D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Nardone, A. Zitouni, R. Liang, et al., Phys. Rev. Lett. 100, 187005 (2008)CrossRefADSGoogle Scholar
  24. 24.
    S.E. Sebastian, N. Harrison, E. Palm, T.P. Murphy, C.H. Mielke, R. Liang, D.A. Bonn, W.N. Hardy, G.G. Lonzarich, Nature 454, 200 (2008)CrossRefADSGoogle Scholar
  25. 25.
    E.A. Yelland, J. Singleton, C.H. Mielke, N. Harrison, F.F. Balakirev, B. Dabrowski, J.R. Cooper, Phys. Rev. Lett. 100, 047003 (2008)CrossRefADSGoogle Scholar
  26. 26.
    A.F. Bangura, J.D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B Vignolle, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, et al., Phys. Rev. Lett. 100, 047004 (2008)CrossRefADSGoogle Scholar
  27. 27.
    T. Helm, et al. (unpublished)Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.Walther-Meißner-InstitutBayerische Akademie der WissenschaftenGarchingGermany

Personalised recommendations