The European Physical Journal Special Topics

, Volume 188, Issue 1, pp 49–59 | Cite as

Tendencies toward nematic order in YBa2Cu3O6+δ: Uniform distortion vs. incipient charge stripes

  • M. Vojta
Regular Article


Recent neutron scattering and transport data obtained on underdoped YBa2Cu3O6+δ, with strong signatures of rotation symmetry breaking at low temperatures, point toward electron-nematic order in the charge sector. Such order may originate from a uniform distortion with d-wave symmetry or as a precursor of a uni-directional stripe phase. Here, we discuss whether the neutron scattering data can be linked to incipient charge stripes. We employ and extend a phenomenological model for collective spin and charge fluctuations and analyze the resulting spin excitation spectrum under the influence of lattice anisotropies. Our results show that the experimentally observed temperature-dependent magnetic incommensurability is compatible with a scenario of incipient stripes, the temperature dependence being due to the temperature variation of both strength and correlation length of the charge stripes. Finally, we propose further experiments to distinguish the possible theoretical scenarios.


European Physical Journal Special Topic Charge Density Wave Charge Order Spin Density Wave Spin Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.A. Kivelson, I.P. Bindloss, E. Fradkin, V. Oganesyan, J.M. Tranquada, A. Kapitulnik, C. Howald, Rev. Mod. Phys. 75, 1201 (2003)CrossRefADSGoogle Scholar
  2. 2.
    M. Vojta, Adv. Phys. 58, 699 (2009)CrossRefGoogle Scholar
  3. 3.
    J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature (London) 375, 561 (1995)CrossRefADSGoogle Scholar
  4. 4.
    V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C.T. Lin, B. Keimer, Science 319, 597 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choiniere, F. Laliberte, N. Doiron-Leyraud, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, Nature 463, 519 (2010)CrossRefADSGoogle Scholar
  6. 6.
    J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu, G. Xu, M. Fujita, K. Yamada, J. Phys. Chem. Solids 67, 511 (2006)CrossRefADSGoogle Scholar
  7. 7.
    C. Howald, H. Eisaki, N. Kaneko, M. Greven, A. Kapitulnik, Phys. Rev. B 67, 014533 (2003)CrossRefADSGoogle Scholar
  8. 8.
    M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, A. Yazdani, Science 303, 1995 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis, Science 315, 1380 (2007)CrossRefADSGoogle Scholar
  10. 10.
    M. Vojta, T. Vojta, R.K. Kaul, Phys. Rev. Lett. 97, 097001 (2006)CrossRefADSGoogle Scholar
  11. 11.
    M. Vojta, Phys. Rev. B 78, 144508 (2008)CrossRefADSGoogle Scholar
  12. 12.
    K. Sun, M.J. Lawler, E.-A. Kim, Phys. Rev. Lett. 104, 106405 (2010)CrossRefADSGoogle Scholar
  13. 13.
    A. Hackl, M. Vojta, Phys. Rev. B 80, 220514(R) (2009)ADSGoogle Scholar
  14. 14.
    O. Zachar, S.A. Kivelson, V.J. Emery, Phys. Rev. B 57, 1422 (1998)CrossRefADSGoogle Scholar
  15. 15.
    S.A. Kivelson, E. Fradkin, V.J. Emery, Nature 393, 550 (1998)CrossRefADSGoogle Scholar
  16. 16.
    M. Vojta, S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999)CrossRefADSGoogle Scholar
  17. 17.
    M. Hücker, M.v. Zimmermann, M. Debessai, J.S. Schilling, J.M. Tranquada, G.D. Gu, Phys. Rev. Lett. 104, 057004 (2010)CrossRefADSGoogle Scholar
  18. 18.
    V.J. Emery, S.A. Kivelson, Physica C 209, 597 (1993)CrossRefADSGoogle Scholar
  19. 19.
    V. Hinkov, P. Bourges, S. Pailhès, Y. Sidis, A. Ivanov, C.D. Frost, T.G. Perring, C.T. Lin, D.P. Chen, B. Keimer, Nature Phys. 3, 780 (2007)CrossRefADSGoogle Scholar
  20. 20.
    I. Eremin, D. Manske, Phys. Rev. Lett. 94, 067006 (2005)CrossRefADSGoogle Scholar
  21. 21.
    I. Eremin, D. Manske, Phys. Rev. Lett. 96, 059902(E) (2006)ADSGoogle Scholar
  22. 22.
    I. Eremin, D. Manske, Phys. Rev. Lett. 98, 139702 (2007)CrossRefADSGoogle Scholar
  23. 23.
    H.-J. Zhao, J. Li, Phys. Rev. Lett. 98, 139701 (2007)CrossRefADSGoogle Scholar
  24. 24.
    A.P. Schnyder, D. Manske, C. Mudry, M. Sigrist, Phys. Rev. B 73, 224523 (2006)CrossRefADSGoogle Scholar
  25. 25.
    H. Yamase, W. Metzner, Phys. Rev. B 73, 214517 (2006)CrossRefADSGoogle Scholar
  26. 26.
    H. Yamase, Phys. Rev. B 79, 052501 (2009)CrossRefADSGoogle Scholar
  27. 27.
    A. Hackl, M. Vojta, S. Sachdev, Phys. Rev. B 81, 045102 (2010)CrossRefADSGoogle Scholar
  28. 28.
    O. Cyr-Choiniere, R. Daou, F. Laliberte, D. LeBoeuf, N. Doiron-Leyraud, J. Chang, J.-Q. Yan, J.-G. Cheng, J.-S. Zhou, J.B. Goodenough, S. Pyon, T. Takayama, H. Takagi, Y. Tanaka, L. Taillefer, Nature 458, 743 (2009)CrossRefADSGoogle Scholar
  29. 29.
    M. Vojta, S. Sachdev, J. Phys. Chem. Solids. 67, 11 (2006)CrossRefADSGoogle Scholar
  30. 30.
    J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu, G. Xu, M. Fujita, K. Yamada, Nature 429, 534 (2004)CrossRefADSGoogle Scholar
  31. 31.
    M. Vojta, T. Ulbricht, Phys. Rev. Lett. 93, 127002 (2004)CrossRefADSGoogle Scholar
  32. 32.
    G.S. Uhrig, K.P. Schmidt, M. Grüninger, Phys. Rev. Lett. 93, 267003 (2004)CrossRefADSGoogle Scholar
  33. 33.
    G. Seibold, J. Lorenzana, Phys. Rev. Lett. 94, 107006 (2005)CrossRefADSGoogle Scholar
  34. 34.
    D.X. Yao, E.W. Carlson, D.K. Campbell, Phys. Rev. Lett. 97, 017003 (2006)CrossRefADSGoogle Scholar
  35. 35.
    V.J. Emery, S.A. Kivelson, J.M. Tranquada, Proc. Natl. Acad. Sci. USA 96, 8814 (1999)CrossRefADSGoogle Scholar
  36. 36.
    D.J. ScalapinoS.R. White, Found. Phys. 31, 27 (2001)CrossRefGoogle Scholar
  37. 37.
    For small s in $\mathcal{S}$ ϕ, charge disorder can lead to rare regions where (locally) the spin gap becomes negative, reflecting the tendency to isolated islands with weak magnetic order. For simpliCity, we do not take into account this weak magnetic condensate in our calculation, as it will influence the excitation spectrum only at the very lowest energies. Hence, we simply ignore the few eigenmodes of $\mathcal{S}$ ϕ + $\mathcal{S}$ ϕψ with negative eigenvalues.Google Scholar
  38. 38.
    The spectral weights of χ′′(q,ω) of Refs. [10, 29, 31] were incorrect due to errors in the numerical evaluation of certain matrix elements. As a result, the weights need to be corrected by an energy-dependent (but only weakly momentum-dependent) factor which is roughly given by 1/ω. Thus, the weight distribution in constant-energy scans remains unaffected. The results of Ref. [31] can be found in correct form in: T. Ulbricht, Diploma thesis, Karlsruhe 2004 (unpublished).Google Scholar
  39. 39.
    In all figures, u1 = −1.15, u2 = 0.1, c1,2;x,y = 0.2, w = 0.05, v = 0.2 in $\mathcal{S}$ ψ, c = 100 meV, s = 70 meV in $\mathcal{S}$ ϕ, λ1 = λ3/2 = 50 meV/|ψ|typ, λ2 = λ4 = 0 in $\mathcal{S}$ ϕψ unless otherwise noted. In contrast, Ref. [10] used s = 120 meV in $\mathcal{S}$ ϕ, resulting in a significantly larger spin gap [37].Google Scholar
  40. 40.
    A.J. Millis, M.R. Norman, Phys. Rev. B 76, 220503(R) (2007)CrossRefADSGoogle Scholar
  41. 41.
    A. Wollny, M. Vojta, Physica B 404, 3079 (2009)CrossRefADSGoogle Scholar
  42. 42.
    A. Audouard, C. Jaudet, D. Vignolles, R. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, C. Proust, Phys. Rev. Lett. 103, 157003 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • M. Vojta
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations