Advertisement

The European Physical Journal Special Topics

, Volume 187, Issue 1, pp 189–197 | Cite as

Resonant propagation of spike trains in delay-coupled neural subthreshold oscillators

  • B. SancristóbalEmail author
  • J.M. Sancho
  • J. Garcia-Ojalvo
Article

Abstract

We study the propagation of spike trains through one-dimensional chains of coupled neurons exhibiting subthreshold oscillations. We consider the existence of a synaptic delay that provides a time scale in addition to the ones given by the periods of the input train and of the subthreshold oscillations. These three time scales affect the evolution of the phase of the neural oscillators, preparing the state of the postsynaptic neuron for the presynaptic input, which can trigger a suprathreshold response according to that phase. In the case of pulsed chemical coupling, results from two coupled neurons help infer the success of the propagation through a larger chain. This situation exhibits a resonant behavior with respect to the period of the input spike train, by which successful propagation arises for certain values of the input period, irrespective of the delay. In the presence of additional electrical coupling via gap junctions, the synaptic delay starts to play a relevant role, and a second resonance appears with respect to that time scale.

Keywords

European Physical Journal Special Topic Spike Train Input Neuron Postsynaptic Neuron Electrical Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Verechtchaguina, L. Schimansky-Geier, I.M. Sokolov, Phys. Rev. E 70, 031916 (2004)CrossRefADSGoogle Scholar
  2. 2.
    T. Verechtchaguina, I.M. Sokolov, L. Schimansky-Geier, Biosystems 89, 63 (2007)CrossRefGoogle Scholar
  3. 3.
    T.A. Engel, L. Schimansky-Geier, A.V.M. Herz, S. Schreiber, I. Erchova, J. Neurophys. 100, 1576 (2008)CrossRefGoogle Scholar
  4. 4.
    E.M. Izhikevich, N.S. Desai, E.C. Walcott, F.C. Hoppensteadt, Trends Neurosci. 26, 161 (2003)CrossRefGoogle Scholar
  5. 5.
    P. Balenzuela, J.M. Buldú, M. Casanovas, J. Garcia-Ojalvo, Phys. Rev. E 74, 061910 (2006)CrossRefADSGoogle Scholar
  6. 6.
    P. Balenzuela, J. Garcia-Ojalvo, AIP Conf. Proc. 913, 178 (2007)CrossRefADSGoogle Scholar
  7. 7.
    M. Volgushev, M. Chistiakova, W. Singer, Neurosci. 83, 15 (1998)CrossRefGoogle Scholar
  8. 8.
    M.J.E. Richardson, N. Brunel, V. Hakim, J. Neurophysiol. 89, 2538 (2003)CrossRefGoogle Scholar
  9. 9.
    N. Brunel, V. Hakim, M.J.E. Richardson, Phys. Rev. E 67, 051916 (2003)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    B. Sancristóbal, J.M. Sancho, J. García-Ojalvo, Phase-response approach to firing-rate selectivity in neurons with subthreshold oscillations (2010) (submitted)Google Scholar
  11. 11.
    V.A. Makarov, V.I. Nekorkin, M.G. Velarde, Phys. Rev. Lett. 86, 3431 (2001)CrossRefADSGoogle Scholar
  12. 12.
    B. Sancristóbal, J.M. Sancho, J. García-Ojalvo, Lecture Notes in Computer Science 5164, 695 (2008)CrossRefGoogle Scholar
  13. 13.
    P. Balenzuela, J. Garcia-Ojalvo, Phys. Rev. E 72, 021901 (2005)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • B. Sancristóbal
    • 1
    Email author
  • J.M. Sancho
    • 2
  • J. Garcia-Ojalvo
    • 1
  1. 1.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations