MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

  • D. Rodríguez
  • K. Blaum
  • W. Nörtershäuser
  • M. Ahammed
  • A. Algora
  • G. Audi
  • J. Äystö
  • D. Beck
  • M. Bender
  • J. Billowes
  • M. Block
  • C. Böhm
  • G. Bollen
  • M. Brodeur
  • T. Brunner
  • B.A. Bushaw
  • R.B. Cakirli
  • P. Campbell
  • D. Cano-Ott
  • G. Cortés
  • J.R. Crespo López-Urrutia
  • P. Das
  • A. Dax
  • A. De
  • P. Delheij
  • T. Dickel
  • J. Dilling
  • K. Eberhardt
  • S. Eliseev
  • S. Ettenauer
  • K.T. Flanagan
  • R. Ferrer
  • J.-E. García-Ramos
  • E. Gartzke
  • H. Geissel
  • S. George
  • C. Geppert
  • M.B. Gómez-Hornillos
  • Y. Gusev
  • D. Habs
  • P.-H. Heenen
  • S. Heinz
  • F. Herfurth
  • A. Herlert
  • M. Hobein
  • G. Huber
  • M. Huyse
  • C. Jesch
  • A. Jokinen
  • O. Kester
  • J. Ketelaer
  • V. Kolhinen
  • I. Koudriavtsev
  • M. Kowalska
  • J. Krämer
  • S. Kreim
  • A. Krieger
  • T. Kühl
  • A.M. Lallena
  • A. Lapierre
  • F. Le Blanc
  • Y.A. Litvinov
  • D. Lunney
  • T. Martínez
  • G. Marx
  • M. Matos
  • E. Minaya-Ramirez
  • I. Moore
  • S. Nagy
  • S. Naimi
  • D. Neidherr
  • D. Nesterenko
  • G. Neyens
  • Y.N. Novikov
  • M. Petrick
  • W.R. Plaß
  • A. Popov
  • W. Quint
  • A. Ray
  • P.-G. Reinhard
  • J. Repp
  • C. Roux
  • B. Rubio
  • R. Sánchez
  • B. Schabinger
  • C. Scheidenberger
  • D. Schneider
  • R. Schuch
  • S. Schwarz
  • L. Schweikhard
  • M. Seliverstov
  • A. Solders
  • M. Suhonen
  • J. Szerypo
  • J.L. Taín
  • P.G. Thirolf
  • J. Ullrich
  • P. Van Duppen
  • A. Vasiliev
  • G. Vorobjev
  • C. Weber
  • K. Wendt
  • M. Winkler
  • D. Yordanov
  • F. Ziegler
Article

DOI: 10.1140/epjst/e2010-01231-2

Cite this article as:
Rodríguez, D., Blaum, K., Nörtershäuser, W. et al. Eur. Phys. J. Spec. Top. (2010) 183: 1. doi:10.1140/epjst/e2010-01231-2

Abstract

Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10−5 to below 10−8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10−9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • D. Rodríguez
    • 1
  • K. Blaum
    • 2
  • W. Nörtershäuser
    • 3
  • M. Ahammed
    • 4
  • A. Algora
    • 5
  • G. Audi
    • 6
  • J. Äystö
    • 7
  • D. Beck
    • 8
  • M. Bender
    • 9
  • J. Billowes
    • 10
  • M. Block
    • 8
  • C. Böhm
    • 2
  • G. Bollen
    • 11
  • M. Brodeur
    • 12
  • T. Brunner
    • 12
  • B.A. Bushaw
    • 13
  • R.B. Cakirli
    • 2
  • P. Campbell
    • 10
  • D. Cano-Ott
    • 14
  • G. Cortés
    • 15
  • J.R. Crespo López-Urrutia
    • 2
  • P. Das
    • 4
  • A. Dax
    • 16
  • A. De
    • 17
  • P. Delheij
    • 12
  • T. Dickel
    • 18
  • J. Dilling
    • 12
  • K. Eberhardt
    • 3
  • S. Eliseev
    • 2
  • S. Ettenauer
    • 12
  • K.T. Flanagan
    • 10
  • R. Ferrer
    • 11
  • J.-E. García-Ramos
    • 19
  • E. Gartzke
    • 20
  • H. Geissel
    • 8
    • 18
  • S. George
    • 11
  • C. Geppert
    • 3
  • M.B. Gómez-Hornillos
    • 15
  • Y. Gusev
    • 21
  • D. Habs
    • 20
  • P.-H. Heenen
    • 22
  • S. Heinz
    • 8
  • F. Herfurth
    • 8
  • A. Herlert
    • 16
  • M. Hobein
    • 24
  • G. Huber
    • 25
  • M. Huyse
    • 26
  • C. Jesch
    • 18
  • A. Jokinen
    • 7
  • O. Kester
    • 11
  • J. Ketelaer
    • 2
  • V. Kolhinen
    • 7
  • I. Koudriavtsev
    • 26
  • M. Kowalska
    • 2
  • J. Krämer
    • 3
  • S. Kreim
    • 2
  • A. Krieger
    • 3
  • T. Kühl
    • 8
  • A.M. Lallena
    • 1
  • A. Lapierre
    • 12
  • F. Le Blanc
    • 27
  • Y.A. Litvinov
    • 2
    • 8
  • D. Lunney
    • 6
  • T. Martínez
    • 14
  • G. Marx
    • 23
  • M. Matos
    • 28
  • E. Minaya-Ramirez
    • 8
  • I. Moore
    • 7
  • S. Nagy
    • 2
  • S. Naimi
    • 6
  • D. Neidherr
    • 2
  • D. Nesterenko
    • 21
  • G. Neyens
    • 26
  • Y.N. Novikov
    • 21
  • M. Petrick
    • 18
  • W.R. Plaß
    • 8
    • 18
  • A. Popov
    • 21
  • W. Quint
    • 8
  • A. Ray
    • 4
  • P.-G. Reinhard
    • 29
  • J. Repp
    • 2
  • C. Roux
    • 2
  • B. Rubio
    • 5
  • R. Sánchez
    • 3
  • B. Schabinger
    • 2
  • C. Scheidenberger
    • 8
    • 18
  • D. Schneider
    • 30
  • R. Schuch
    • 24
  • S. Schwarz
    • 10
  • L. Schweikhard
    • 23
  • M. Seliverstov
    • 21
  • A. Solders
    • 24
  • M. Suhonen
    • 24
  • J. Szerypo
    • 20
  • J.L. Taín
    • 5
  • P.G. Thirolf
    • 20
  • J. Ullrich
    • 2
  • P. Van Duppen
    • 26
  • A. Vasiliev
    • 21
  • G. Vorobjev
    • 21
  • C. Weber
    • 20
  • K. Wendt
    • 25
  • M. Winkler
    • 8
  • D. Yordanov
    • 16
  • F. Ziegler
    • 23
  1. 1.Departamento de Física Atómica Molecular y NuclearUniversity of GranadaGranadaSpain
  2. 2.Max-Planck-Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Institut für Kernchemie, Johannes Gutenberg-UniversitätMainzGermany
  4. 4.Variable Energy Cyclotron CentreBidhanagarIndia
  5. 5.IFIC-CSIC University of ValenciaValenciaSpain
  6. 6.CSNSM-IN2P3, CNRSOrsayFrance
  7. 7.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  8. 8.GSI, Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  9. 9.CENBG/IN2P3Bordeaux-GradignanFrance
  10. 10.Department of Physics and AstronomyUniversity of ManchesterManchesterUK
  11. 11.Michigan State University, NSCLEast LansingUSA
  12. 12.TRIUMFVancouverCanada
  13. 13.Pacific Northwest National Lab, PNNLRichlandUSA
  14. 14.CIEMATMadridSpain
  15. 15.UPCBarcelonaSpain
  16. 16.CERNGenevaSwitzerland
  17. 17.Raniganj Girls’ CollegeRaniganjIndia
  18. 18.II. Institute of Physics, Justus-Liebig UniversityGießenGermany
  19. 19.Departamento de Física Aplicada, University of HuelvaHuelvaSpain
  20. 20.Department of PhysicsLudwig-Maximilians University MünchenGarchingGermany
  21. 21.St. Petersburg Nuclear Physics Institute, 188359 Gatchina and St. Petersburg State UniversitySt. PetersburgRussia
  22. 22.PNTPM, CP229, Université Libre de BruxellesBrusselsBelgium
  23. 23.Institute of Physics, Ernst-Moritz-Arndt UniversityGreifswaldGermany
  24. 24.SCFAB, Stockholm UniversityStockholmSweden
  25. 25.Institute of Physics, Johannes Gutenberg-UniversityMainzGermany
  26. 26.Afd. Kern- en stralingsfysica, Katholieke Universiteit LeuvenLeuvenBelgium
  27. 27.IN2P3-CNRSOrsayFrance
  28. 28.Louisiana State UniversityBaton RougeUSA
  29. 29.Institute of Theoretical Physics II, Friedrich-Alexander UniversityErlangenGermany
  30. 30.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations