Advertisement

MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

  • D. RodríguezEmail author
  • K. Blaum
  • W. Nörtershäuser
  • M. Ahammed
  • A. Algora
  • G. Audi
  • J. Äystö
  • D. Beck
  • M. Bender
  • J. Billowes
  • M. Block
  • C. Böhm
  • G. Bollen
  • M. Brodeur
  • T. Brunner
  • B.A. Bushaw
  • R.B. Cakirli
  • P. Campbell
  • D. Cano-Ott
  • G. Cortés
  • J.R. Crespo López-Urrutia
  • P. Das
  • A. Dax
  • A. De
  • P. Delheij
  • T. Dickel
  • J. Dilling
  • K. Eberhardt
  • S. Eliseev
  • S. Ettenauer
  • K.T. Flanagan
  • R. Ferrer
  • J.-E. García-Ramos
  • E. Gartzke
  • H. Geissel
  • S. George
  • C. Geppert
  • M.B. Gómez-Hornillos
  • Y. Gusev
  • D. Habs
  • P.-H. Heenen
  • S. Heinz
  • F. Herfurth
  • A. Herlert
  • M. Hobein
  • G. Huber
  • M. Huyse
  • C. Jesch
  • A. Jokinen
  • O. Kester
  • J. Ketelaer
  • V. Kolhinen
  • I. Koudriavtsev
  • M. Kowalska
  • J. Krämer
  • S. Kreim
  • A. Krieger
  • T. Kühl
  • A.M. Lallena
  • A. Lapierre
  • F. Le Blanc
  • Y.A. Litvinov
  • D. Lunney
  • T. Martínez
  • G. Marx
  • M. Matos
  • E. Minaya-Ramirez
  • I. Moore
  • S. Nagy
  • S. Naimi
  • D. Neidherr
  • D. Nesterenko
  • G. Neyens
  • Y.N. Novikov
  • M. Petrick
  • W.R. Plaß
  • A. Popov
  • W. Quint
  • A. Ray
  • P.-G. Reinhard
  • J. Repp
  • C. Roux
  • B. Rubio
  • R. Sánchez
  • B. Schabinger
  • C. Scheidenberger
  • D. Schneider
  • R. Schuch
  • S. Schwarz
  • L. Schweikhard
  • M. Seliverstov
  • A. Solders
  • M. Suhonen
  • J. Szerypo
  • J.L. Taín
  • P.G. Thirolf
  • J. Ullrich
  • P. Van Duppen
  • A. Vasiliev
  • G. Vorobjev
  • C. Weber
  • K. Wendt
  • M. Winkler
  • D. Yordanov
  • F. Ziegler
Article

Abstract

Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10−5 to below 10−8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10−9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.

Keywords

European Physical Journal Special Topic Channel Electron Multiplier Collinear Laser Spectroscopy Precision Trap Total Absorption Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    K. Blaum, N. Yu. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    G. Bollen, Nucl. Phys. A 693, 3 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    K. Blaum, et al., Phys. Rev. Lett. 91, 260801 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    F. Herfurth, et al., J. Phys. B 36, 931 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M. Smith, et al., Phys. Rev. Lett. 101, 202501 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    S. Schwarz, et al., Nucl. Phys. A 693, 533 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    K. Blaum, et al., Europhys. Lett. 67, 586 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Van Roosbroeck J., et al., Phys. Rev. Lett. 92, 112501 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    M. Block, et al., Phys. Rev. Lett. 100, 132501 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    B. Fogelberg, et al., Phys. Rev. Lett. 82, 1823 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    I.S. Towner, J.C. Hardy, J. Phys. G 29, 197 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    H. Abele, et al., Phys. Rev. Lett. 88, 211801 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    B Sciascia, the FlaviaNet Kaon Working Group, Nucl. Phys. B. Proc. Suppl. 181-182, 83 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    I.S. Towner, J.C. Hardy, Phys. Rev. C 77, 025501 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 56, 22 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    K. Hagiwara, et al., Phys. Rev. D 66, 010001 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    P. Langacker, D. London, Phys. Rev. D 38, 886 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    J. Maalampi, M. Roos, Phys. Rep. 186, 53 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    P. Langacker, M. Luo, Phys. Rev. D 45, 278 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    W.J. Marciano, A. Sirlin, Phys. Rev. D 35, 1672 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    J. Deutsch, in Workshop on the Breaking of Fundamental Symmetries in Nuclei (Santa Fe, 1988) Google Scholar
  26. 26.
    B.R. Holstein, S.B. Treiman, Phys. Rev. D 16, 2369 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Liao, X. Li, Phys. Lett. B 503, 301 (2001)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    A. Kellerbauer, et al., Phys. Rev. Lett. 93, 072502 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    G. Savard, et al., Phys. Rev. Lett. 95, 102501 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    T. Eronen, et al., Phys. Rev. Lett. 97, 232501 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    T. Eronen, et al., Phys. Rev. Lett. 100, 132502 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    M. Mukherjee, et al., Phys. Rev. Lett. 93, 150801 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    F. Herfurth, et al., Phys. Rev. Lett. 87, 142501 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    G. Bollen, et al., Phys. Rev. Lett. 96, 152501 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    S. George, et al., Phys. Rev. Lett. 98, 162501 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    T. Eronen, et al., Phys. Rev. C 79, 032802(R) (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Eronen, Ph.D. thesis, University of Jyväskylä, Finland (2008)Google Scholar
  38. 38.
    T. Eronen, et al., Phys. Lett. B 636, 191 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    P. Schury, et al., Phys. Rev. C 75, 055801 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    K. Heyde, et al., Phys. Rep. 102, 291 (1983)ADSCrossRefGoogle Scholar
  42. 42.
    J.L. Wood, et al., Phys. Rep. 215, 291 (1992)CrossRefGoogle Scholar
  43. 43.
    R. Rodríguez-Guzman, J.L. Egido, L.M. Robledo, Phys. Rev. C 69, 054319 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    M. Bender, et al., Phys. Rev. C 69, 064303 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    R. Rodríguez-Guzman, et al., Phys. Rev. C 81, 024310 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    J.-Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B 227, 1 (1989)ADSCrossRefGoogle Scholar
  47. 47.
    P. Van Isacker, D.D. Warner, D.S. Brenner, Phys. Rev. Lett. 74, 4607 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    R.B. Cakirli, et al., Phys. Rev. Lett. 94, 092501 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    R.B. Cakirli, et al., Phys. Rev. Lett. 95, 119903 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    W. Satula, et al., Phys. Lett. B 407, 103 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    D.S. Brenner, et al., Phys. Lett. B 243, 1 (1990)ADSCrossRefGoogle Scholar
  52. 52.
    D. Neidherr, et al., Phys. Rev. Lett. C 80, 044323 (2009)ADSGoogle Scholar
  53. 53.
    D. Neidherr, et al., Phys. Rev. Lett. 102, 112501 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    M. Dworschak, et al., Phys. Rev. Lett. 100, 072501 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    J. Hakala, et al., Phys. Rev. Lett. 101, 052502 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    J. Dilling, et al., Nucl. Instrum. Methods B 204, 492 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    V.L. Ryjkov, et al., Phys. Rev. Lett. 101, 012501 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    W. Geithner, et al., Phys. Rev. Lett. 101, 252502 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    D.S. Brenner, et al., Phys. Rev. C 73, 034315 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    M. Block, et al., Nature 463, 785 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    J. Jänecke, P.J. Masson, At. Data Nucl. Data Tab. 39, 265 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    T. Tachibana, et al., At. Data Nucl. Data Tab. 39, 251 (1988)ADSCrossRefGoogle Scholar
  63. 63.
    S. Goriely, et al., Phys. Rev. C 68, 054325 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    M. Samyn, et al., Nucl. Phys. A 700, 024308 (2002)Google Scholar
  65. 65.
    F. Tondeur, et al., Phys. Rev. C 62024308 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    S. Goriely, N. Chamel, J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. Lett. 94, 102503 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    P. Fleischer, et al., Phys. Rev. C 70, 054321 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    P. Klupfel, et al., Eur. Phys. J. A 37, 343 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    J.-P. Delaroche, et al., Phys. Rev. C 81, 014303 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    S. Goriely, S. Hilaire, M. Girod, S. Peru, Phys. Rev. Lett. 102, 242501 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 78, 054312 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    J. Toivanen, J. Dobaczewski, M. Kortelainen, K. Mizuyama, Phys. Rev. C 78, 034306 (2008)ADSCrossRefGoogle Scholar
  75. 75.
    H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006)ADSCrossRefGoogle Scholar
  76. 76.
    C. Rauth, et al., Phys. Rev. Lett. 100, 012501 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    U. Hager, et al., Phys. Rev. C 75, 064302 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    J.A. Clark, et al., Phys. Rev. C 75, 032801 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    J.A. Clark, et al., Phys. Rev. Lett. 92, 192501 (2004)ADSCrossRefGoogle Scholar
  81. 81.
    D. Rodríguez, et al., Phys. Rev. Lett. 93, 161104 (2004)ADSCrossRefGoogle Scholar
  82. 82.
    D. Rodríguez, et al., Nucl. Phys. A 769, 1 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    G. Sikler, et al., Nucl. Phys. A 763, 45 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    H. Schatz, et al., Phys. Rev. Lett. 86, 3471 (2001)ADSCrossRefGoogle Scholar
  85. 85.
    A. Kankainen, et al., Eur. Phys. J. A 29, 271 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    C. Weber, et al., Phys. Rev. C 78, 054310 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    A. Martín, et al., Eur. Phys. J. A 34, 341 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    V.-V. Elomaa, et al., Eur. Phys. J. A 40, 1 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    M. Breitenfeldt, et al., Phys. Rev. C 80, 035805 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    M. Breitenfeldt, et al., Phys. Rev. C 81, 034313 (2010)ADSCrossRefGoogle Scholar
  91. 91.
    E. Haetner, et al., GSI Scientific Report 2008, 134 (2009)Google Scholar
  92. 92.
    J.A. Clark, et al., Eur. Phys. J. A. 25, S01 629 (2005)CrossRefGoogle Scholar
  93. 93.
    J. Fallis, et al., Phys. Rev. C 78, 022801 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    J. Fallis, et al., PoS (NIC X) 044Google Scholar
  95. 95.
    C. Fröhlich, et al., Phys. Rev. Lett. 96, 142502 (2006)ADSCrossRefGoogle Scholar
  96. 96.
    J. Pruet, et al., Astrophys. J. 644, 1028 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    J.L. Fisker, R.D. Hoffman, J. Pruet, Astrophys. J. Lett. 690, 135 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    C. Mazzochi, et al., Phys. Rev. Lett. 98, 212501 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    V.-V. Elomaa, et al., Phys. Rev. Lett. 102, 252501 (2009)ADSCrossRefGoogle Scholar
  100. 100.
    J.M. Pearson, R.C. Nayak, S. Goriely, Phys. Lett. B 387, 455 (1996)ADSCrossRefGoogle Scholar
  101. 101.
    B. Sun, et al., Nucl. Phys. A 812, 1 (2008)ADSCrossRefGoogle Scholar
  102. 102.
    B. Sun, et al., Phys. Rev C 78, 025806 (2008)ADSCrossRefGoogle Scholar
  103. 103.
    B. Pfeiffer et al, Nucl. Phys. A 693, 282 (2001)MathSciNetADSCrossRefGoogle Scholar
  104. 104.
    I. Dillman, et al., Phys. Rev. Lett. 91, 162503 (2003)ADSCrossRefGoogle Scholar
  105. 105.
    P. Beiersdorfer, et al., Science 300, 1558 (2003)ADSCrossRefGoogle Scholar
  106. 106.
    M.A. Levine, et al., Phys. Scripta T 22, 157 (1988)ADSCrossRefGoogle Scholar
  107. 107.
    P. Beiersdorfer, et al., Phys. Rev. Lett. 95, 233003 (2005)ADSCrossRefGoogle Scholar
  108. 108.
    S.W. Epp, et al., Phys. Rev. Lett. 98, 183001 (2007)ADSCrossRefGoogle Scholar
  109. 109.
    A.S. El-Said, et al., Nucl. Instrum. Methods B 258, 167 (2007)ADSCrossRefGoogle Scholar
  110. 110.
    Crespo López-Urrutia J.R., et al., Phys. Scripta TB 92, 110 (2001)ADSGoogle Scholar
  111. 111.
    Y. Zou, J.R. Crespo López-Urrutia, J. Ullrich, Phys. Rev. A 6742703 (2003)ADSCrossRefGoogle Scholar
  112. 112.
    A.J. González Martínez, et al., Phys. Rev. Lett. 94, 203201 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    A.J. González Martínez, et al., Phys. Rev. A 73, 052710 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    Z. Harman, et al., Phys. Rev. A 73, 052711 (2006)ADSCrossRefGoogle Scholar
  115. 115.
    P.H. Mokler, et al., Phys. Rev. A 77, 012506 (2008)ADSCrossRefGoogle Scholar
  116. 116.
    H. Bruhns, et al., Phys. Rev. Lett. 99, 113001 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    I.N. Draganic, et al., Phys. Rev. Lett. 81, 183001 (2003)ADSCrossRefGoogle Scholar
  118. 118.
    I.I. Tupitsyn, et al., Phys. Rev. A 68, 022511 (2003)ADSCrossRefGoogle Scholar
  119. 119.
    R. Soria-Orts, et al., Phys. Rev. Lett. 97, 103002 (2006)ADSCrossRefGoogle Scholar
  120. 120.
    R. Soria-Orts, et al., Phys. Rev. A 76, 052501 (2007)ADSCrossRefGoogle Scholar
  121. 121.
    J.R. Crespo López-Urrutia, Can. J. Phys. 86, 111 (2008)ADSCrossRefGoogle Scholar
  122. 122.
    A. Lapierre, et al., Phys. Rev. Lett. 95, 183001 (2005)ADSCrossRefGoogle Scholar
  123. 123.
    W. Meissl, et al., Rev. Sci. Instrum. 77, 093303 (2006)ADSCrossRefGoogle Scholar
  124. 124.
    W. Meissl, et al., Nucl. Instrum. Methods B 256, 520 (2007)ADSCrossRefGoogle Scholar
  125. 125.
    A.S. El-Said, et al., Nucl. Instrum. Methods B 256, 346 (2007)ADSCrossRefGoogle Scholar
  126. 126.
    G. Brenner, et al., Rev. A 75, 032504 (2007)CrossRefGoogle Scholar
  127. 127.
    M.C. Simon, et al., Phys. Rev. Lett. (submitted) (2009)Google Scholar
  128. 128.
    R. Kallman, P. Palmeri, Rev. Mod. Phys. 79, 79 (2007)ADSCrossRefGoogle Scholar
  129. 129.
    L. Weissman, et al., Nucl. Instrum Methods A 492, 451 (2002)ADSCrossRefGoogle Scholar
  130. 130.
    A. Sobiczewski, et al., Phys. Rev. C 63, 034306 (2001)ADSCrossRefGoogle Scholar
  131. 131.
    B. Grasemann, Atomic Inner Shell Processes (Academic Press, 1975)Google Scholar
  132. 132.
    J.C. Hardy, et al., Phys. Lett. B 71, 307 (1977)ADSCrossRefGoogle Scholar
  133. 133.
  134. 134.
    H.V. Klapdor, Prog. Part. Nucl. Phys. 10, 131 (1983)ADSCrossRefGoogle Scholar
  135. 135.
    H. Grawe, et al., Rep. Prog. Phys. 70, 1525 (2007)ADSCrossRefGoogle Scholar
  136. 136.
    I. Hamamoto, Nucl. Phys. A 577, 19c (1994)ADSCrossRefGoogle Scholar
  137. 137.
    J.C. Hardy, et al., Phys. Rev. Lett. 88, 252501 (2002)MathSciNetADSCrossRefGoogle Scholar
  138. 138.
  139. 139.
  140. 140.
    J. Pereira, et al., Phys. Rev. C 79035806 (2009)ADSCrossRefGoogle Scholar
  141. 141.
    K. Blaum, et al., Nucl. Phys. A 752, 317c (2005)ADSCrossRefGoogle Scholar
  142. 142.
    K. Blaum, et al., Eur. Phys. J. A 15, 245 (2002)ADSCrossRefGoogle Scholar
  143. 143.
    S. Schwarz, et al., Nucl. Instrum. Methods B 204, 507 (2003)ADSCrossRefGoogle Scholar
  144. 144.
    K. Blaum, et al., Nucl. Instrum. Methods B 204, 331 (2003)ADSCrossRefGoogle Scholar
  145. 145.
    K. Wendt, et al., Nucl. Phys. A 746, 47c (2004)ADSCrossRefGoogle Scholar
  146. 146.
    H.-J. Kluge, et al., Phys. Scripta T 104, 167 (2003)ADSCrossRefGoogle Scholar
  147. 147.
    H.-J. Kluge, K. Blaum, Nucl. Phys. A 746, 200c (2004)ADSCrossRefGoogle Scholar
  148. 148.
    A.H. Wapstra, et al., Nucl. Phys. A 729, 129 (2003)ADSCrossRefGoogle Scholar
  149. 149.
    E.W. Otten, Nuclear radii and moments of unstable isotopes, in Treatise on heavy-ion science, edited by D. A. Bromley (1989), p.517Google Scholar
  150. 150.
    J. Billowes, P. Campbell, J. Phys. G 21, 707 (1995)ADSCrossRefGoogle Scholar
  151. 151.
    R. Neugart, Eur. Phys. J. A 15, 35 (2002)ADSCrossRefGoogle Scholar
  152. 152.
    H.-J. Kluge, W. Nörtershäuser, Spectrochim. Acta, Part B 58, 1031 (2003)Google Scholar
  153. 153.
    K. Heilig, A. Steudel, At. Data Nucl. Data Tab. 14, 613 (1974)ADSCrossRefGoogle Scholar
  154. 154.
    K. Heilig, Hyp. Int. 24, 345 (1985)ADSCrossRefGoogle Scholar
  155. 155.
    G. Fricke, K. Heilig, textitNuclear Charge Radii, in Landolt-Börnstein, Vol. 20, edited by H. Schopper (Springer Verlag, 2004)Google Scholar
  156. 156.
    W.H. King, Isotope Shifts in Atomic Spectra (Springer Verlag, 1984)Google Scholar
  157. 157.
    Z.C. Yan, G.W.F. Drake, Phys. Rev. A 61, 022504 (2000)ADSCrossRefGoogle Scholar
  158. 158.
    Z.C. Yan, W. Nörtershäuser, G.W.F. Drake, Phys. Rev. Lett. 100, 243002 (2008)ADSCrossRefGoogle Scholar
  159. 159.
    M. Puchalski, K. Pachucki, Phys. Rev. A 78, 052511 (2008)ADSCrossRefGoogle Scholar
  160. 160.
    W. Geitner, Ph.D. thesis, Johannes Gutenberg University Mainz, Germany (2002)Google Scholar
  161. 161.
    E. Arnold, et al., Phys. Lett. B 197, 311 (1987)ADSCrossRefGoogle Scholar
  162. 162.
    E. Arnold, et al., Phys. Lett. B 281, 16 (1992)ADSCrossRefGoogle Scholar
  163. 163.
    E. Arnold, et al., Z. Phys. A 349, 337 (1994)ADSCrossRefGoogle Scholar
  164. 164.
    M. Puchalski, A.M. Moro, K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006)ADSCrossRefGoogle Scholar
  165. 165.
    L.B. Wang, et al., Phys. Rev. Lett. 93, 142501 (2004)ADSCrossRefGoogle Scholar
  166. 166.
    P. Müller, et al., Phys. Rev. Lett. 99, 252501 (2007)CrossRefGoogle Scholar
  167. 167.
    G. Ewald, et al., Phys. Rev. Lett. 93, 113002 (2004)ADSCrossRefGoogle Scholar
  168. 168.
    R. Sánchez, et al., Phys. Rev. Lett. 96, 033002 (2006)ADSCrossRefGoogle Scholar
  169. 169.
    W. Nörtershäuser, et al., Phys. Rev. Lett. 102, 062503 (2009)CrossRefGoogle Scholar
  170. 170.
    M. Záková, et al., J. Phys. G 37, 055107 (2010)CrossRefGoogle Scholar
  171. 171.
    M. Keim, et al., Eur. Phys. J. A 8, 31 (2000)ADSCrossRefGoogle Scholar
  172. 172.
    G. Savard, et al., Hyp. Int. 132, 221 (2001)ADSCrossRefGoogle Scholar
  173. 173.
    H. Backe, et al., Phys. Rev. Lett. 80, 920 (1998)ADSCrossRefGoogle Scholar
  174. 174.
    H. Backe, et al., Hyp. Int. 127, 35 (2000)ADSCrossRefGoogle Scholar
  175. 175.
    S. Köhler, et al., Spectrochim. Acta, Part B 52, 717 (1997)Google Scholar
  176. 176.
    M. Sewtz, et al., Phys. Rev. Lett. 90, 163002 (2003)ADSCrossRefGoogle Scholar
  177. 177.
    J. Dilling, et al., Hyp. Int. 127, 491 (2000)ADSCrossRefGoogle Scholar
  178. 178.
    J. Ketelaer, et al., Nucl. Instrum. Methods A 594, 162 (2008)ADSCrossRefGoogle Scholar
  179. 179.
    H. Backe, et al., Eur. Phys. J. D 45, 99 (2007)ADSCrossRefGoogle Scholar
  180. 180.
    Yu. Kudryavtsev, et al., Nucl. Instrum Methods B 267, 2908 (2009)ADSCrossRefGoogle Scholar
  181. 181.
    Th. Cocolis, et al., Phys. Rev. Lett. 103, 102501 (2009)ADSCrossRefGoogle Scholar
  182. 182.
    A. Nieminen, et al., Phys. Rev. Lett. 88, 094801 (2002)ADSCrossRefGoogle Scholar
  183. 183.
    J.M.G. Levins, et al., Phys. Rev. Lett. 82, 2476 (1999)ADSCrossRefGoogle Scholar
  184. 184.
    P. Campbell, Hyp. Int. 171, 143 (2006)ADSCrossRefGoogle Scholar
  185. 185.
    B. Cheal, et al., Hyp. Int. 181, 107 (2008)ADSCrossRefGoogle Scholar
  186. 186.
    B. Cheal, et al., Phys. Rev. Lett. 102, 222501 (2009)ADSCrossRefGoogle Scholar
  187. 187.
    P. Seelig, et al., Phys. Rev. Lett. 81, 4824 (1998)ADSCrossRefGoogle Scholar
  188. 188.
    F. Herfurth, et al., Nucl. Instrum. Methods A 469, 254 (2001)ADSCrossRefGoogle Scholar
  189. 189.
    A. Nieminen, et al., Nucl. Instrum. Methods A 469, 244 (2001)ADSCrossRefGoogle Scholar
  190. 190.
    P. Lievens, et al., Nucl. Instrum. Methods B 70, 532 (1992)ADSCrossRefGoogle Scholar
  191. 191.
    R.E. Silverans, P. Lievens, L. Vermeeren, Nucl. Instrum. Methods B 26, 591 (1987)ADSCrossRefGoogle Scholar
  192. 192.
    R. Neugart, et al., Nucl. Instrum. Methods B 17, 354 (1986)ADSCrossRefGoogle Scholar
  193. 193.
    P. Campbell, et al., Phys. Lett. Lett. 89, 082501 (2002)ADSCrossRefGoogle Scholar
  194. 194.
    R. Neugart, Hyp. Int. 127, 101 (2000)ADSCrossRefGoogle Scholar
  195. 195.
    R. Neugart, et al., Phys. Rev. Lett. 101, 132502 (2008)ADSCrossRefGoogle Scholar
  196. 196.
    M.G. Payne, L. Deng, N. Thonnard, Rev. Sci. Instrum. 65, 2433 (1994)ADSCrossRefGoogle Scholar
  197. 197.
    U. Köster, V.N. Fedoseyev, V.I. Mishin, Spectrochim. Acta, Part B 58, 1047 (2003)Google Scholar
  198. 198.
    H.-J. Kluge, et al., Laser Ion Sources in Proceedings of the Accelerated Radioactive Beams Workshop (Parksville, Canada, 1985)Google Scholar
  199. 199.
    L. Weissman, et al., Phys. Rev. C 65, 024315 (2002)ADSCrossRefGoogle Scholar
  200. 200.
    H. De Witte, et al., Phys. Rev. Lett. 98, 112502 (2007)ADSCrossRefGoogle Scholar
  201. 201.
    Z.-T. Lu, K. Wendt, Rev. Sci. Instrum. 74, 1169 (2003)ADSCrossRefGoogle Scholar
  202. 202.
    V.N. Fedoseyev, et al., Hyp. Int. 127, 409 (2000)ADSCrossRefGoogle Scholar
  203. 203.
    T. Sonoda, et al., Nucl. Instrum. Methods B 267, 2918 (2009)ADSCrossRefGoogle Scholar
  204. 204.
    J. Sauvage, et al., Hyp. Int., 129, 303 (2000)ADSCrossRefGoogle Scholar
  205. 205.
    J.B. Neumayr, et al., Nucl. Instrum. Methods B 244, 489 (2006)ADSCrossRefGoogle Scholar
  206. 206.
    J. Maul, et al., Nucl. Instrum. Methods B 226, 644 (2004)ADSGoogle Scholar
  207. 207.
    F. Le Blanc, et al., Phys. Rev. Lett. 79, 2213 (1997)ADSCrossRefGoogle Scholar
  208. 208.
    F. Le Blanc, et al., Phys. Rev. C 60, 054310 (1999)ADSCrossRefGoogle Scholar
  209. 209.
    V.N. Fedoseyev, et al., Nucl. Instrum. Methods B 204, 353 (2003)ADSCrossRefGoogle Scholar
  210. 210.
    A.N. Andreyev, et al., Eur. Phys. J. A 14, 63 (2002)ADSGoogle Scholar
  211. 211.
    H. De Witte, et al., Phys. Rev. C, 69, 044305 (2004)ADSCrossRefGoogle Scholar
  212. 212.
    S. Schwarz, et al., Nucl. Instrum. Methods B 204, 474 (2003)ADSCrossRefGoogle Scholar
  213. 213.
    T. Aumann, Prog. Part. Nucl. Phys. 59, 3 (2007)ADSCrossRefGoogle Scholar
  214. 214.
    X. Fléchard(private communication)Google Scholar
  215. 215.
    T. Nakamura, et al., Opt. Commun. 205, 329 (2002)ADSCrossRefGoogle Scholar
  216. 216.
    T. Nakamura, et al., Phys. Rev. A. 74, 052503 (2006)ADSCrossRefGoogle Scholar
  217. 217.
    K. Okada, et al., Phys. Rev. Lett. 101, 212502 (2008)ADSCrossRefGoogle Scholar
  218. 218.
    W. Quint, et al., Hyp. Int. 132, 453 (2000)ADSCrossRefGoogle Scholar
  219. 219.
    O. Kester, et al., Nucl. Phys. A. 701, 71 (2002)ADSCrossRefGoogle Scholar
  220. 220.
    P. Karvonen, et al., Nucl. Instrum. Methods B 266, 4794 (2008)ADSCrossRefGoogle Scholar
  221. 221.
    I. Podadera-Aliseda, Ph.D. thesis, Barcelona Tech, CERN, 2006Google Scholar
  222. 222.
    I. Podadera, et al., Eur. Phys. J. A 25, s01 743 (2005)CrossRefGoogle Scholar
  223. 223.
    H. Franberg, et al., Nucl. Instrum. Methods B 266, 4502 (2008)ADSCrossRefGoogle Scholar
  224. 224.
    E. Mané, et al., Eur. Phys. J. A 42, 503 (2009)ADSCrossRefGoogle Scholar
  225. 225.
    D. Rodríguez, Ph.D. thesis, University of Valencia, Spain (2003)Google Scholar
  226. 226.
    G.E. Lee-Whiting, L. Yamazaki, Nucl. Instrum. Methods 94, 315 (1971)ADSCrossRefGoogle Scholar
  227. 227.
    W.R. Plaß, et al., Nucl. Instrum. Methods B 266, 4560 (2008)ADSCrossRefGoogle Scholar
  228. 228.
    T. Dickel, et al., GSI Scientific Report 2006, 204 (2007)Google Scholar
  229. 229.
    C. Scheidenberger, et al., Nucl. Instrum. Methods B 204, 119 (2003)ADSCrossRefGoogle Scholar
  230. 230.
    D. Boutin, et al., GSI Scientific Report 2006, 55 (2007)Google Scholar
  231. 231.
    M. Petrick, et al., Nucl. Instrum. Methods B 266, 4493 (2008)ADSCrossRefGoogle Scholar
  232. 232.
    S. Eliseev, et al., Int. J. Spectrom. 262, 45 (2007)CrossRefGoogle Scholar
  233. 233.
    M. Petrick, Ph.D. thesis, Justus-Liebig-University Gießen, Germany (2008)Google Scholar
  234. 234.
    Z. Wang, Ph.D. thesis, Justus-Liebig-University Gießen, Germany (2006)Google Scholar
  235. 235.
    S. Eliseev, Ph.D. thesis, Justus-Liebig-University Gießen, Germany (2004)Google Scholar
  236. 236.
    W.R. Plaß, et al., Eur. Phys. J. Special Topics 150, 367 (2007)ADSCrossRefGoogle Scholar
  237. 237.
    A. Loboda, et al., Eur. J. Mass Spectrom. 6, 531 (2000)CrossRefGoogle Scholar
  238. 238.
    M. Weidenmüller, et al., Hyp. Int. 146, 219 (2003)ADSCrossRefGoogle Scholar
  239. 239.
    A. Simon, Bachelor Thesis, Justus-Liebig-University Gießen, Germany (2008)Google Scholar
  240. 240.
    W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)ADSCrossRefGoogle Scholar
  241. 241.
    C. Jesch, Diploma Thesis, Justus-Liebig-University Gießen, Germany (2008)Google Scholar
  242. 242.
    K. Reinheimer, Diploma Thesis, Justus-Liebig-University Gießen, Germany (2008)Google Scholar
  243. 243.
    H. Wollnik, et al., Nucl. Instrum. Methods A 519, 373 (2004)ADSCrossRefGoogle Scholar
  244. 244.
    A.N. Verentchikov, et al., Tech. Phys. 50, 73 (2005)CrossRefGoogle Scholar
  245. 245.
    T. Dickel, Diploma Thesis, Justus-Liebig-University Gießen, Germany (2006)Google Scholar
  246. 246.
    N.E. Bradbury, R.A. Nielsen, Phys. Rev. 49, 388 (1936)ADSCrossRefGoogle Scholar
  247. 247.
    G. Eitel, et al., Nucl. Instrum. Methods A 606, 475 (2009)ADSCrossRefGoogle Scholar
  248. 248.
    C. Champagne, et al., Hyp. Int. 173, 85 (2006)ADSCrossRefGoogle Scholar
  249. 249.
    J. Dilling, et al., Int. J. Mass Spectrom. 251, 198 (2006)ADSCrossRefGoogle Scholar
  250. 250.
    S. Schwarz, et al., Nucl. Instrum. Methods B 266, 4466 (2008)ADSCrossRefGoogle Scholar
  251. 251.
    A. Lakatos, Diploma Thesis, Johann Wolfgang Goethe-University Frankfurt, Germany (1992)Google Scholar
  252. 252.
    R. Ferrer, Ph.D. thesis, Johannes Gutenberg University Mainz, Germany (2007)Google Scholar
  253. 253.
    S. Rahaman, et al., Int. J. Mass Spectrom. 251, 146 (2006)ADSCrossRefGoogle Scholar
  254. 254.
    V. Kolhinen, et al., Nucl. Instrum. Methods B 204, 502 (2003)ADSCrossRefGoogle Scholar
  255. 255.
    V. Kolhinen, et al., Nucl. Instrum. Methods B 266, 4547 (2008)ADSCrossRefGoogle Scholar
  256. 256.
    S. Ulmer, et al, Rev. Sci. Instrum. 80, 123302 (2009)ADSCrossRefGoogle Scholar
  257. 257.
    K. Blaum, et al., J. Phys. B 42, 154019 (2009)ADSCrossRefGoogle Scholar
  258. 258.
    F. Herfurth, et al., AIP Conf. Proc. 793, 278 (2005)ADSCrossRefGoogle Scholar
  259. 259.
    G. Maero, Ph.D. thesis, Ruprecht-Karls-University Heidelberg, Germany (2008)Google Scholar
  260. 260.
    M. Amoretti, et al., Nucl. Instrum. Methods A 518, 679 (2004)ADSCrossRefGoogle Scholar
  261. 261.
    T. Yamazaki, et al., Phys. Rep. 366, 183 (2002)ADSCrossRefGoogle Scholar
  262. 262.
    S.L. Rolston, G. Gabrielse, Hyp. Int. 44, 233 (1988)ADSCrossRefGoogle Scholar
  263. 263.
    J. Bernard, et al., Nucl. Instrum. Methods A 532, 224 (2004)ADSCrossRefGoogle Scholar
  264. 264.
    Z. Ke, et al., Hyp. Int. 173, 103 (2006)ADSCrossRefGoogle Scholar
  265. 265.
    Th. Beier, et al., HITRAP Technical Design Report, GSI (2003)Google Scholar
  266. 266.
    V.L. Ryjkov, et al., Eur. Phys. J. A 25s53 (2005)CrossRefGoogle Scholar
  267. 267.
    D.J. Wineland, et al., Phys. Rev. Lett. 40, 1639 (1978)ADSCrossRefGoogle Scholar
  268. 268.
    W. Neuhäuser, et al., Phys. Rev. Lett. 41, 233 (1978)ADSCrossRefGoogle Scholar
  269. 269.
    D.J. Larson, et al., Phys. Rev. Lett. 57, 70 (1986)ADSCrossRefGoogle Scholar
  270. 270.
    L. Gruber, et al., Phys., Rev. Lett. 86, 636 (2001)ADSCrossRefGoogle Scholar
  271. 271.
    S. Rainville, et al., Phys. Rev. Lett. 83, 4510 (1999)ADSCrossRefGoogle Scholar
  272. 272.
    M. Bussman, et al., Int. J. Mass Spectrom. 251, 176 (2006)Google Scholar
  273. 273.
    M. Ubieto-Díaz, et al., Int. J. Mass Spectrom. 288, 1 (2009)CrossRefGoogle Scholar
  274. 274.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  275. 275.
    G. Bollen, Lect. Notes Phys. 651, 169 (2004)ADSGoogle Scholar
  276. 276.
    S. George, et al., Int. J. Mass Spectrom. 264, 110 (2007)ADSCrossRefGoogle Scholar
  277. 277.
    M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)ADSCrossRefGoogle Scholar
  278. 278.
    S. George, et al., Eur. Phys. Lett. 82, 50005 (2008)ADSCrossRefGoogle Scholar
  279. 279.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  280. 280.
    R. Ringle, et al., Int. J. Mass Spectrom. 263, 38 (2007)ADSCrossRefGoogle Scholar
  281. 281.
    A. Kellerbauer, et al., Eur. Phys. J. D 22, 53 (2003)ADSCrossRefGoogle Scholar
  282. 282.
    L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  283. 283.
    G. Gabrielse, Phys. Rev. Lett. 102, 172501 (2009)ADSCrossRefGoogle Scholar
  284. 284.
    G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)ADSCrossRefGoogle Scholar
  285. 285.
    M. König, et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995)ADSCrossRefGoogle Scholar
  286. 286.
    G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)ADSCrossRefGoogle Scholar
  287. 287.
    J.L. Wiza, Nucl. Instrum. Methods A 162, 587 (1979)CrossRefGoogle Scholar
  288. 288.
    H.C. Straub, et al., Rev. Sci. Instrum. 70, 4238 (1999)ADSCrossRefGoogle Scholar
  289. 289.
    C. Yazidjian, et al., Hyp. Int. 173, 181 (2006)ADSCrossRefGoogle Scholar
  290. 290.
    www.detechinc.comGoogle Scholar
  291. 291.
    A.G. Marshall, Int. J. Mass Spectrom. 200, 331 (2000)CrossRefGoogle Scholar
  292. 292.
    S. Agostinelli, et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  293. 293.
    J.L. Wood, et al., Nucl. Phys. A 651, 323 (1999)ADSCrossRefGoogle Scholar
  294. 294.
    P. Van Duppen, et al., Phys. Rev. Lett. 52, 1974 (1984)ADSCrossRefGoogle Scholar
  295. 295.
    P. Van Duppen, et al., Phys. Rev. C 35, 1861 (1987)ADSCrossRefGoogle Scholar
  296. 296.
    P. Dendooven, et al., Phys. Lett. B 226, 27 (1989)ADSCrossRefGoogle Scholar
  297. 297.
    N. Bijnens, et al., Z. Phys. A 356, 3 (1996)ADSCrossRefGoogle Scholar
  298. 298.
    P. Van Duppen, et al., Phys. Lett. B 154, 354 (1985)ADSCrossRefGoogle Scholar
  299. 299.
    J. Wauters, et al., Phys. Rev. Lett. 72, 1329 (1994)ADSCrossRefGoogle Scholar
  300. 300.
    A.N. Andreyev, et al., Eur. Phys. J. A 6, 381 (1999)ADSCrossRefGoogle Scholar
  301. 301.
    A.N. Andreyev, et al., Nature 405, 430 (2000)ADSCrossRefGoogle Scholar
  302. 302.
    A.N. Andreyev, et al., Nucl. Phys. A 682, 482c (2001)ADSCrossRefGoogle Scholar
  303. 303.
    J. Wauters, et al., Z. Phys. A 345, 21 (1993)ADSCrossRefGoogle Scholar
  304. 304.
    J. Wauters, et al., Phys. Rev. C 50, 2768 (1994)ADSCrossRefGoogle Scholar
  305. 305.
  306. 306.
    P.T. Hosmer, Ph.D. thesis, MSU NSCL, United States (2005) http://www.nscl.msu.edu/ourlab/publications/download/Hosmer2005_207.pdf
  307. 307.
    A. Buta, et al., Nucl. Instrum. Methods A 455, 412 (2000)ADSCrossRefGoogle Scholar
  308. 308.
    D. Dohl, Int. J. Mass Spectrom. 200, 3 (2000)CrossRefGoogle Scholar
  309. 309.
    E. Kugler, Hyp. Int. 129, 23 (2000)ADSCrossRefGoogle Scholar
  310. 310.
    B. Cheal, et al., Phys. Lett. B 645, 133 (2007)ADSCrossRefGoogle Scholar
  311. 311.
    D. Manura: SIMION 7.0 user program to create non-repeating waveform of line segments. www.simion.com/info User Programming (2006)
  312. 312.
    M. Kowalska, et al., Phys. Rev. C 77, 034307 (2008)ADSCrossRefGoogle Scholar
  313. 313.
    D. Borremans, et al., Phys. Rev. C 72, 044309 (2005)ADSCrossRefGoogle Scholar
  314. 314.
    G. Neyens, et al., Phys. Rev. Lett. 94, 022501 (2005)ADSCrossRefGoogle Scholar
  315. 315.
    D. Yordanov, et al., Phys. Rev. Lett. 99, 212501 (2007)ADSCrossRefGoogle Scholar
  316. 316.
    A. Krieger, Diploma Thesis, Johannes Gutenberg University Mainz, Germany (2008)Google Scholar
  317. 317.
  318. 318.
    T. Thümmler, New J. Phys. 11, 103007 (2009)ADSCrossRefGoogle Scholar
  319. 319.
    H.-J. Kluge, et al., Adv. Quantum Chem. 53, 83 (2008)ADSCrossRefGoogle Scholar
  320. 320.
    C. Rauth, et al., Eur. Phys. J. D 45, 47 (2007)ADSCrossRefGoogle Scholar
  321. 321.
    M. Mukherjee, et al., Eur. Phys. J. A 35, 1 (2008)ADSCrossRefGoogle Scholar
  322. 322.
    A. Blazevic, et al., GSI Scientific Report 2007, 315 (2008)Google Scholar
  323. 323.
    D. Beck, et al., Nucl. Instrum. Methods A 527, 567 (2004)ADSCrossRefGoogle Scholar
  324. 324.
    D. Beck, H. Brand, Proc. SEIFruhjahrstatung 2007 Rossendorf, edited by F. Wulf, Germany, ISSN 0936-0891 191 (2007)Google Scholar
  325. 325.
    R. Jamal, H. Pichlik, LabVIEW Applications, Solutions (Prentice Hall, 1999)Google Scholar
  326. 326.
    H. Hahn, U. Thiemer, GSI Scientific Report 2004, 343 (2005)Google Scholar
  327. 327.
    H.G. Essel, et al., IEEE Trans. Nucl. Sci., 43, 132 (1996)ADSCrossRefGoogle Scholar
  328. 328.
    H.G. Essel, N. Kurz, IEEE Trans. Nucl. Sci. 47, 337 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • D. Rodríguez
    • 1
    Email author
  • K. Blaum
    • 2
  • W. Nörtershäuser
    • 3
  • M. Ahammed
    • 4
  • A. Algora
    • 5
  • G. Audi
    • 6
  • J. Äystö
    • 7
  • D. Beck
    • 8
  • M. Bender
    • 9
  • J. Billowes
    • 10
  • M. Block
    • 8
  • C. Böhm
    • 2
  • G. Bollen
    • 11
  • M. Brodeur
    • 12
  • T. Brunner
    • 12
  • B.A. Bushaw
    • 13
  • R.B. Cakirli
    • 2
  • P. Campbell
    • 10
  • D. Cano-Ott
    • 14
  • G. Cortés
    • 15
  • J.R. Crespo López-Urrutia
    • 2
  • P. Das
    • 4
  • A. Dax
    • 16
  • A. De
    • 17
  • P. Delheij
    • 12
  • T. Dickel
    • 18
  • J. Dilling
    • 12
  • K. Eberhardt
    • 3
  • S. Eliseev
    • 2
  • S. Ettenauer
    • 12
  • K.T. Flanagan
    • 10
  • R. Ferrer
    • 11
  • J.-E. García-Ramos
    • 19
  • E. Gartzke
    • 20
  • H. Geissel
    • 8
    • 18
  • S. George
    • 11
  • C. Geppert
    • 3
  • M.B. Gómez-Hornillos
    • 15
  • Y. Gusev
    • 21
  • D. Habs
    • 20
  • P.-H. Heenen
    • 22
  • S. Heinz
    • 8
  • F. Herfurth
    • 8
  • A. Herlert
    • 16
  • M. Hobein
    • 24
  • G. Huber
    • 25
  • M. Huyse
    • 26
  • C. Jesch
    • 18
  • A. Jokinen
    • 7
  • O. Kester
    • 11
  • J. Ketelaer
    • 2
  • V. Kolhinen
    • 7
  • I. Koudriavtsev
    • 26
  • M. Kowalska
    • 2
  • J. Krämer
    • 3
  • S. Kreim
    • 2
  • A. Krieger
    • 3
  • T. Kühl
    • 8
  • A.M. Lallena
    • 1
  • A. Lapierre
    • 12
  • F. Le Blanc
    • 27
  • Y.A. Litvinov
    • 2
    • 8
  • D. Lunney
    • 6
  • T. Martínez
    • 14
  • G. Marx
    • 23
  • M. Matos
    • 28
  • E. Minaya-Ramirez
    • 8
  • I. Moore
    • 7
  • S. Nagy
    • 2
  • S. Naimi
    • 6
  • D. Neidherr
    • 2
  • D. Nesterenko
    • 21
  • G. Neyens
    • 26
  • Y.N. Novikov
    • 21
  • M. Petrick
    • 18
  • W.R. Plaß
    • 8
    • 18
  • A. Popov
    • 21
  • W. Quint
    • 8
  • A. Ray
    • 4
  • P.-G. Reinhard
    • 29
  • J. Repp
    • 2
  • C. Roux
    • 2
  • B. Rubio
    • 5
  • R. Sánchez
    • 3
  • B. Schabinger
    • 2
  • C. Scheidenberger
    • 8
    • 18
  • D. Schneider
    • 30
  • R. Schuch
    • 24
  • S. Schwarz
    • 10
  • L. Schweikhard
    • 23
  • M. Seliverstov
    • 21
  • A. Solders
    • 24
  • M. Suhonen
    • 24
  • J. Szerypo
    • 20
  • J.L. Taín
    • 5
  • P.G. Thirolf
    • 20
  • J. Ullrich
    • 2
  • P. Van Duppen
    • 26
  • A. Vasiliev
    • 21
  • G. Vorobjev
    • 21
  • C. Weber
    • 20
  • K. Wendt
    • 25
  • M. Winkler
    • 8
  • D. Yordanov
    • 16
  • F. Ziegler
    • 23
  1. 1.Departamento de Física Atómica Molecular y NuclearUniversity of GranadaGranadaSpain
  2. 2.Max-Planck-Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Institut für Kernchemie, Johannes Gutenberg-UniversitätMainzGermany
  4. 4.Variable Energy Cyclotron CentreBidhanagarIndia
  5. 5.IFIC-CSIC University of ValenciaValenciaSpain
  6. 6.CSNSM-IN2P3, CNRSOrsayFrance
  7. 7.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  8. 8.GSI, Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  9. 9.CENBG/IN2P3Bordeaux-GradignanFrance
  10. 10.Department of Physics and AstronomyUniversity of ManchesterManchesterUK
  11. 11.Michigan State University, NSCLEast LansingUSA
  12. 12.TRIUMFVancouverCanada
  13. 13.Pacific Northwest National Lab, PNNLRichlandUSA
  14. 14.CIEMATMadridSpain
  15. 15.UPCBarcelonaSpain
  16. 16.CERNGenevaSwitzerland
  17. 17.Raniganj Girls’ CollegeRaniganjIndia
  18. 18.II. Institute of Physics, Justus-Liebig UniversityGießenGermany
  19. 19.Departamento de Física Aplicada, University of HuelvaHuelvaSpain
  20. 20.Department of PhysicsLudwig-Maximilians University MünchenGarchingGermany
  21. 21.St. Petersburg Nuclear Physics Institute, 188359 Gatchina and St. Petersburg State UniversitySt. PetersburgRussia
  22. 22.PNTPM, CP229, Université Libre de BruxellesBrusselsBelgium
  23. 23.Institute of Physics, Ernst-Moritz-Arndt UniversityGreifswaldGermany
  24. 24.SCFAB, Stockholm UniversityStockholmSweden
  25. 25.Institute of Physics, Johannes Gutenberg-UniversityMainzGermany
  26. 26.Afd. Kern- en stralingsfysica, Katholieke Universiteit LeuvenLeuvenBelgium
  27. 27.IN2P3-CNRSOrsayFrance
  28. 28.Louisiana State UniversityBaton RougeUSA
  29. 29.Institute of Theoretical Physics II, Friedrich-Alexander UniversityErlangenGermany
  30. 30.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations