Advertisement

The European Physical Journal Special Topics

, Volume 182, Issue 1, pp 125–144 | Cite as

Flow visualization in a low-density plasma channel

  • R.L. KimmelEmail author
  • J.R. Hayes
  • J. Estevadeordal
  • J.W. Crafton
  • S.D. Fonov
  • S. Gogineni
Article

Abstract

A schlieren system and surface-stress-sensitive film system were developed for a plasma channel which posed unique challenges for flow visualization because of the combination of low air density and the presence of plasma discharges. Temperature-sensitive paint and direct-current discharge were also applied to flow visualization. Three pulsed schlieren light sources were evaluated. A light-emitting diode (LED), a xenon NanopulserTM and laser breakdown, were tested on identical flowfields. The LED provided excellent illumination, with pulses ranging from μs to continuous. The NanopulserTM provided excellent, short-duration images, although illumination varied from shot-to-shot. Laser-breakdown provided short-duration, incoherent illumination that was constant from pulse-to-pulse. The surface-stress-sensitive film was applied to surface flow visualization. A low-modulus elastomer doped with a luminescent dye was used to visualize the surface shear stress and pressure field in laminar shock boundary layer interactions. Intensity distributions from the dye were imaged to interrogate the surface pressure gradients. Displacement of surface markers provided shear information. Results showed the presence of Görtler vortices in the reattaching shear flow. Görtler vortices were also evident in temperature-sensitive paint images and in the plasma discharge glow. These vortices were evident in the intensity images from the elastomer, which could be related to the surface pressure gradient, but were not readily evident in surface shear measurements.

Keywords

European Physical Journal Special Topic Shock Generator Stagnation Pressure Plasma Channel Schlieren Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Shang, B. Ganguly, R. Umstattd, J. Hayes, M. Arman, P. Bletzinger, J. Aircraft 37, 1065 (2000)CrossRefGoogle Scholar
  2. 2.
    J.S. Shang, J.R. Hayes, J.H. Miller, J.A. Menart, AIAA Paper 2002–0349 (2002)Google Scholar
  3. 3.
    J.S. Shang, R. Kimmel, J. Hayes, C. Tyler, J. Menart, J. Spacecr. Rockets 42, 780 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Y.P. Raizer, Gas Discharge Physics (Springer-Verlag, New York, 1997)Google Scholar
  5. 5.
    J.S. Shang, J. Hayes, J. Miller, J. Menart, AIAA Paper 2001–2803 (2001)Google Scholar
  6. 6.
    Ames Research Staff, NACA Report 1135 (1953)Google Scholar
  7. 7.
    R.L. Kimmel, J.R. Hayes, J.W. Crafton, S.D. Fonov, J. Menart, J. Shang, AIAA Paper 2006–0710 (2006)Google Scholar
  8. 8.
    J. Estevadeordal, S. Gogineni, R.L. Kimmel, J.R. Hayes, AIAA Paper 2004–1139 (2004)Google Scholar
  9. 9.
    J. Estevadeordal, S. Gogineni, R.L. Kimmel, J.R. Hayes, Expt. Thermal Fluid Sci. 32, 98 (2007)CrossRefGoogle Scholar
  10. 10.
    G.S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001)Google Scholar
  11. 11.
    T. Beutner, R. Adelgren, G. Elliott, AIAA J. 44, 399 (2006)CrossRefADSGoogle Scholar
  12. 12.
    B. Zakharin, J. Stricker, G. Toker, AIAA J. 37, 1133 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, 1966)Google Scholar
  14. 14.
    R.L. Kimmel, J.R. Hayes, J.A. Menart, J. Shang, S. Henderson, AIAA Paper 2003–3855 (2003)Google Scholar
  15. 15.
    J.S. Shang, R.L. Kimmel, J.A. Menart, S.T. Surzhikov, J. Prop. Power 24, 923 (2008)CrossRefGoogle Scholar
  16. 16.
    R.L. Kimmel, J.R. Hayes, J.A. Menart, J. Shang, AIAA Paper 2004–0509 (2004)Google Scholar
  17. 17.
    S.D. Fonov, L.P. Goss, G.E. Jones, J.W. Crafton, V.S. Fonov, M. Ol, AIAA Paper 2005–1029 (2005)Google Scholar
  18. 18.
    S.D. Fonov, L.P. Goss, G.E. Jones, J.W. Crafton, V.S. Fonov, M. Ol, in Proc. 11th Int. Symp. Flow Visualization, Univ. Notre Dame, Indiana, USA, edited by T.J. Mueller, Paper No. 62 (2004)Google Scholar
  19. 19.
    K.R. Castleman, Digital Image Processing, (Prentice-Hall, Englewood Cliffs, New Jersey, 1979), p. 113Google Scholar
  20. 20.
    H. Schlichting, Boundary-Layer Theory, 7th ed., (McGraw-Hill, New York, 1979), p. 526Google Scholar
  21. 21.
    A. Henckels, A.F. Kreins, F. Maurer, Zeit. Flugwissen. Weltraum. 17, 116 (1993)Google Scholar
  22. 22.
    U. Domröse, E. Krause, M. Meinke, Zeit. Flugwissen. Weltraum. 20, 89 (1996)Google Scholar
  23. 23.
    M. Nishio, AIAA J. 28, 2085 (1990)CrossRefADSGoogle Scholar
  24. 24.
    M. Nishio, AIAA J. 34, 1464 (1996)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • R.L. Kimmel
    • 1
    Email author
  • J.R. Hayes
    • 1
  • J. Estevadeordal
    • 2
  • J.W. Crafton
    • 3
  • S.D. Fonov
    • 3
  • S. Gogineni
    • 4
  1. 1.Air Force Research Laboratory, Air Vehicles Directorate, WPAFBOhioUSA
  2. 2.Innovative Scientific Solutions, Inc., DaytonOhioUSA
  3. 3.Innovative Scientific Solutions, Inc., DaytonOhioUSA
  4. 4.Innovative Scientific Solutions, Inc., DaytonOhioUSA

Personalised recommendations