The European Physical Journal Special Topics

, Volume 182, Issue 1, pp 113–124 | Cite as

Quantitative schlieren measurements in a normal incidence acoustic impedance tube

  • Q. Song
  • C. Moreno
  • F. Liu
  • L. CattafestaEmail author
Regular Article


Historically, the schlieren-based optical deflectometer has been successfully used to characterize high-speed compressible flows. This article describes the use of the instrument to measure significantly smaller density gradients associated with the one-dimensional acoustic wave field in a quiescent medium inside a plane wave tube. Results of the static calibration are presented. Cross-spectral analysis between the light intensity fluctuations in a schlieren image and a reference microphone signal is then used to determine the quantitative density gradient field in the normal incidence impedance tube. The results are rigorously compared with those obtained using the standard two-microphone method. The lowest sound pressure level measured with reasonable accuracy is a 100 dB (re 20  μPa), 5 kHz tone. Expressions for the sensitivities of both the optical system and the photodetector device are derived, as well as an expression for the minimum detectable signal. These results are used to discuss potential improvements and fundamental limitations.


European Physical Journal Special Topic Shot Noise Schlieren Image Image Screen Acoustic Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, Berlin, 2001)Google Scholar
  2. 2.
    P.A. Chinnery, V.F. Humphrey, C. Beckett, J. Acoust. Soc. Am. 101 (1997), DOI: 10.1121/1.417976
  3. 3.
    L. Derbesse, P. Pernod, V. Latard, A. Merlen, D. Decultot, N. Touraine, G. Maze, Ultrasonics 38 (2000), DOI: 10.1016/S0041-624X(99)00165-1
  4. 4.
    D.R. Newman, J. Acoust. Soc. Am. 53 (1973), DOI: 10.1121/1.1913443
  5. 5.
    A. Powell, Proc. Phys. Soc. B 66 (1953), DOI: 10.1088/0370-1301/66/12/306
  6. 6.
    M.J. Hargather, G.S. Settles, Shock Waves 17 (2007), DOI: 10.1007/s00193-007-0108-8
  7. 7.
    S.S. McIntyre, E. Stanewsky, G.S. Settles, Instrumentation in Aerospace Simulation Facilities (1991), ICIASF’91 Record, DOI: 10.1109/ICIASF.1991.186222
  8. 8.
    M.J. Doty, D.K. McLaughlin, Exp. Fluids 38 (2005), DOI: 10.1007/s00348-004-0920-1
  9. 9.
    S. Garg, L.N. Cattafesta, Exp. Fluids 30 (2001), DOI: 10.1007/s003480000147
  10. 10.
    ASTM-E-1050-98, Impedance, Absorption of Acoustical Materials Using a Tube, Two Microphones, and a Digital Frequency Analysis System (ASTM International, West Conshohocken, PA, 1998)Google Scholar
  11. 11.
    T. Schultz, M. Sheplak, L.N. Cattafesta, J. Sound VIB. 304 (2007), DOI: 10.1016/j.jsv.2007.02.015
  12. 12.
    D.T. Blackstock, Fundamentals of Physical Acoustics (John Wiley and Sons, New York, 2000)Google Scholar
  13. 13.
    C.A. Virgin, B.F. Carroll, L.N. Cattafesta, K.S. Schanze, M.E. Kose, Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers, New York, 2005)Google Scholar
  14. 14.
    Hamamatsu Photonics, Solid State Division, Characteristics, use of Si APD (Avalanche Photodiode), Technical Information SD-28. Cat. No. KAPD9001E02, 2001Google Scholar
  15. 15.
    J.S. Bendat, A.G. Piersol, Random Data Analysis and Measurement Procedures (John Wiley and Sons, Inc., New York, 2000)Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.John Deere Product Engineering CenterWaterlooUSA
  2. 2.Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations