Advertisement

Review and update of lens and grid schlieren and motion camera schlieren

  • L.M. WeinsteinEmail author
Review

Abstract

Optical density variation in fluids and transparent solids can often be studied by examining the effect of refraction of light passing through the medium. The schlieren technique has proven to be particularly well suited for these applications, and has been widely used for wind-tunnel studies. Newer variations of this technique have extended it to a wide range of applications. The lens and grid schlieren systems have been used to examine aerodynamic flow fields that were previously difficult to study with conventional schlieren systems. Motion camera schlieren was developed to obtain the flow field around aircraft in flight and rocket sleds. This paper gives an up to date review of the background and development of the lens and grid schlieren and motion camera schlieren techniques and includes examples of many of the flows studied using the techniques, including some previously unpublished ones. In addition, some preliminary results from new versions of both types of systems are described.

Keywords

Shock Wave Wind Tunnel European Physical Journal Special Topic Weinstein AIAA Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Merzkirch, Flow Visualization, 2nd ed. (Academic, Orlando, Florida, 1987)Google Scholar
  2. 2.
    A. Toepler, Beobachtungen nach einer neuen optischen Methode. Ein Beitrag zur Experimentalphysik (A.M. Cohen und Sohn, Bonn, 1864)Google Scholar
  3. 3.
    H. Schardin, Ergebnisse der Exakten Natur-wissenschaft. 20, 303 (1942) (English trans.: NASA TT F-12,732)CrossRefGoogle Scholar
  4. 4.
    G.S. Settles, Schlieren and Shadowgraph Techniques. Visualizing Phenomena in Transparent Media (Springer, Heidelberg, 2001)Google Scholar
  5. 5.
    A. Kantrowitz, R.L. Trimpi, J. Aeron. Sci. 17(5), 311 (1950)Google Scholar
  6. 6.
    R.A. Burton, J. Opt. Soc. Am. 39(11), 907 (1949)CrossRefADSGoogle Scholar
  7. 7.
    R.A. Burton, M.S.M.E. Thesis, Univ. Texas (1951)Google Scholar
  8. 8.
    R.A. Burton, J. Opt. Soc. Am. 41 (11), 858 (1951)CrossRefADSGoogle Scholar
  9. 9.
    K. R.W. Fish,K. Parnham,, Br. ARC C.P. No. 54 (1950)Google Scholar
  10. 10.
    T.A. Mortensen, Rev. Sci. Instr. 21, 3 (1950)CrossRefADSGoogle Scholar
  11. 11.
    L.R. Boedecker, M.S. Thesis, Dept. Aeron. & Astron., MIT (1959)Google Scholar
  12. 12.
    G. Dixon-Lewis, G.L. Isles, J. Sci. Inst. 39, 148 (1962)CrossRefADSGoogle Scholar
  13. 13.
    R.D. Buzzard, in Proc. 8th Int. Cong. High Speed Photography, Stockholm, edited by N.R. Nilsson, L. Högberg (Wiley, New York, 1968), p. 335Google Scholar
  14. 14.
    Z. Rotem, E.G. Hauptmann, L. Caassen, Appl. Opt. 8, 2326 (1969)CrossRefADSGoogle Scholar
  15. 15.
    A. Bowker, Can. NRC Quart. Bull. No. 3, 27 (1970)Google Scholar
  16. 16.
    E.M. Platonov, N.M. Spornik, Zhur. Priklad. Spek. 39, 831 (1983)Google Scholar
  17. 17.
    A.P. Gardner, J. Audiov. Media Med. 9, 144 (1986)Google Scholar
  18. 18.
    L. Weinstein, AIAA Paper 91–0567 (1991)Google Scholar
  19. 19.
    L. Weinstein, in Flow Visualization VI. Proc. 6th Int. Symp. Flow Vis., Yokohama, edited by Y. Tanida (Springer, Berlin, 1992), p. 672Google Scholar
  20. 20.
    F. Alvi, G. Settles, L.M. Weinstein, AIAA Paper 93–0629 (1993)Google Scholar
  21. 21.
    E. Gartenburg, L. Weinstein, AIAA Paper 93–3485 (1993)Google Scholar
  22. 22.
    E. Gartenberg, L.M. Weinstein, E.E. Lee, Jr., AIAA J. 32, 1242 (1994)CrossRefADSGoogle Scholar
  23. 23.
    L.M. Weinstein, AIAA J. 31, 1250 (1993)CrossRefADSGoogle Scholar
  24. 24.
    G. Pellett, W. Roberts, L. Wilson, W. Humphreys, S. Bartram, L. Weinstein, K. Issac, AIAA Paper 94–2300 (1994)Google Scholar
  25. 25.
    G.S. Settles, E.B. Hackett, J.D. Miller, L.M. Weinstein, in Flow Visualization VII. Proc. 7th Int. Symp. Flow Vis., Seattle, edited by J.P. Crowder (Begell House, New York, 1995), p. 2Google Scholar
  26. 26.
    L.M. Weinstein, in Proc. Int. Conf. Opt. Technology Image Processing in Fluid, Thermal, and Combustion Flow, Yokohama, Vol. VSJ-SPIE98 (Vis. Soc.Japan, 1998), Paper AB124Google Scholar
  27. 27.
    L. Weinstein, J. Vis. 2, 322 (2000)Google Scholar
  28. 28.
    M.J. Hargather, M.J. Lawson, G.S. Settles, L.M. Weinstein, S. Gogenini, AIAA Paper 2009–0069 (2009)Google Scholar
  29. 29.
    G. Doggett, N. Chokani, in Proc. 1991 Joint ASME-JSME Fluids Eng. Conf., Forum on Turbulent Flows, Portland Oregon, Vol. 112 (ASME, New York, 1991), p. 45Google Scholar
  30. 30.
    G. Doggett, M.S. thesis, Dept. Mech. Aerosp. Eng., North Carolina State Univ. (1992)Google Scholar
  31. 31.
    G.P. Doggett, N. Chokani, AIAA Paper 92–3936 (1992)Google Scholar
  32. 32.
    S.P. Cook, N. Chokani, AIAA Paper 93–0630 (1993)Google Scholar
  33. 33.
    G.P. Doggett, N. Chokani, J. Spacecr. Rockets 30, 742 (1993)CrossRefADSGoogle Scholar
  34. 34.
    A.D. Cutler, B.S. Levey, AIAA Paper 91–1815 (1991)Google Scholar
  35. 35.
    M. Ponton, J. Seiner, L. Mitchell, J. Manning, B. Jansen, N. Lagen, in Proc. DGLR/AIAA 14th Aeroacoustics Conf., May 1992, DGLR/AIAA 92-02-027Google Scholar
  36. 36.
    S.H. Collicott, T.R. Salyer, AIAA Paper 93–2917 (1993)Google Scholar
  37. 37.
    F.S. Alvi, G.S. Settles, L.M. Weinstein, AIAA Paper 93–0629 (1993)Google Scholar
  38. 38.
    K.S. Chun, R.J. Locke, C.M. Lee, W.J. Ratvasky, NASA TM 106479 (1994) & AIAA Paper 94–0280 (1994)Google Scholar
  39. 39.
    C.M. Hackett, G.S. Settles, J.D. Miller, J. Thermal Spray Tech. 3, 299 (1994)CrossRefADSGoogle Scholar
  40. 40.
    J.D. Downie, Appl. Opt. 34, 6021 (1995)CrossRefADSGoogle Scholar
  41. 41.
    S. Raghu, G. Goutevenier, Expts. Fluids 19, 136 (1995)CrossRefADSGoogle Scholar
  42. 42.
    J.T. Heineck, US Pat. 5,515,158 (1996)Google Scholar
  43. 43.
    G.S. Settles, S. Garg, J. Thermal Spray Tech. 5, 35 (1996)CrossRefADSGoogle Scholar
  44. 44.
    R. Taghavi, G. Raman, Expts. Fluids 20, 472 (1996)CrossRefADSGoogle Scholar
  45. 45.
    V.I. Vlad, N. Ionescu-Pallas, F. Bociort, Opt. Eng. 35, 1305 (1996)CrossRefADSGoogle Scholar
  46. 46.
    G.S. Settles, ASHRAE J. 39, 19 (1997)Google Scholar
  47. 47.
    F.P. Schmid, V.A. Smith, R.T. Swierczyna, ASHRAE Trans. 103, 937 (1997)Google Scholar
  48. 48.
    S. Garg, G.S. Settles, Expts. Fluids 25, 254 (1998)CrossRefADSGoogle Scholar
  49. 49.
    R.D. Kothari, Y. Wu, in Proc. High-Speed Imaging and Sequence Analysis, Vol. 3642, edited by A.M. Frank, J.S. Walton (SPIE, Bellingham, Washington, 1999), p. 149Google Scholar
  50. 50.
    M.A. Kegerise, G.S. Settles, in Proc. 9th (Millennium) Int. Symp. Flow Visualization, Edinburgh, Scotland, edited by G.M. Carlomagno, I. Grant, Paper No. 380 (2000)Google Scholar
  51. 51.
    G.S. Settles, in Proc. 15th Int. Cong. for Plastics in Agriculture, Hershey, Pennsylvania (2000), p.88Google Scholar
  52. 52.
    Y. Wu, H.J. Xing, G. Atkinson, Fire Safety J. 35, 391 (2000)CrossRefGoogle Scholar
  53. 53.
    G. Serafino, P. Sirotti, Opt. Eng. 41, 2549 (2002)CrossRefADSGoogle Scholar
  54. 54.
    G.S. Settles, B.T. Keane, B.W. Anderson, J.A. Gatto, Shock Waves 12, 267 (2003)CrossRefADSGoogle Scholar
  55. 55.
    R.B. Teese, M.M. Waters, Opt. Eng. 43, 2501 (2004)CrossRefADSGoogle Scholar
  56. 56.
    D.R. Jonassen, G.S. Settles, M.D. Tronosky, Opt. Lasers Eng. 44, 190 (2006)CrossRefGoogle Scholar
  57. 57.
    H. Kleine, G.S. Settles, Shock Waves 17 (2008)Google Scholar
  58. 58.
    R. Hooke, J. Martyn & J. Allestry, London (1665)Google Scholar
  59. 59.
    C. HuygensŒuvres complètes de Christiaan Huygens, Vol. 21 (Martinus Nijhoff, The Hague, Holland, 1944)Google Scholar
  60. 60.
    L.M. Weinstein, NASA CP–3279, 1 (1994)Google Scholar
  61. 61.
    L.M. Weinstein, in Album of Visualization(The Visualization Society of Japan), No. 11 (1994)Google Scholar
  62. 62.
    L.M. Weinstein, US Pat. 5,534,995 (1996)Google Scholar
  63. 63.
    L.M. Weinstein, in Proc. High-Speed Research Program Sonic Boom Workshop, NASA CP-3335, Vol. 1 (1996), p. 244Google Scholar
  64. 64.
    L.M. Weinstein, K. Stacy, G.J. Vieira, E.A. Haering, Jr., A.H. Bowers, J. Flow Vis. Image Proc., 4, 189 (1997)Google Scholar
  65. 65.
    L.M. Weinstein, W. Culliton, R. Rivers, in Proc. 8th Int. Symp. on Flow Visualization, Sorrento, Italy, edited by G.M. Carlomagno, Paper No. 80 (1998)Google Scholar
  66. 66.
    L.M. Weinstein, D. Minto, in Proc. 22nd Int. Cong. High-Speed Photography and Photonics, edited by D.L. Paisley, A.M. Frank, SPIE 2869, 865 (1997)Google Scholar
  67. 67.
    C. Mercer (ed.), Optical Metrology for Fluids, Combustion and Solids (Springer, 2003)Google Scholar
  68. 68.
    Personal communication with Drew Lesperance of MetroLaser, Inc.Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  1. 1.National Aeronautics and Space Administration (retired). National Institute of AerospaceHampton, VirginiaUSA

Personalised recommendations