Advertisement

Co-operative and frustration effects in novel perovskite-related phases

  • 333 Accesses

  • 15 Citations

Abstract.

We report on magnetic and electronic properties of various perovskite-type oxides containing 4d- and 5d-transition metals. The compounds under investigation crystallize in (distorted) cubic, layered, and hexagonal perovskite-related structures. These changes in structural dimensionality are reflected by different ordering phenomena. (Pseudo-) cubic perovskites ACu3B4O12 (with A = alkali, alkaline earth or rare earth; B = Ru, Ti) possess an A-site ordered structure with copper on modified A-positions. Structural investigations as well as XANES (X-ray absorption near edge structure) measurements indicate a valence degeneracy, which is keeping the oxidation state of Ru close to +4. Upon replacing Ru by Ti, the itinerant magnetism and metallic conductivity of the pure ruthenates successively change to a localized magnetic moment and a semiconducting behavior. The pure titanates like Ln2/3Cu3Ti4O12 or CaCu3Ti4O12are insulators with colossal dielectric constants. The cation-deficient Cu2+xTa4O12+δ shows a large compositional flexibility with 0.125 ≤ x ≤ 0.500. Both copper content and cooling speed have a strong impact on the crystal structure and the observed magnetic ordering. This behavior can be explained by uncompensated Cu2+-moments resulting from different site occupations. Quasi-2D La2RuO5 undergoes a structural and magnetic phase transition at roughly 160 K, leading to a diminishing magnetic moment and a semiconductor-semiconductor transition. LDA calculations reveal an antiferromagnetic coupling within pairs of neighboring Ru4+-ions, leading to a spin-Peierls like transition. New hexagonal perovskites containing Ru, Ir, and Pt crystallize in the [AO1+δ][A2BO6] structure type and contain peroxide ions (O) in the [AO1+δ] layers. La1.2Sr2.7IrO7.33 exhibits a small temperature-independent paramagnetism, which can be explained on basis of the crystal-field splitting and the strong spin-orbit coupling. The isostructural La1.2Sr2.7RuO7.33 shows a frustrated magnetic ordering at roughly 6 K. The frustration results from the alignment of Ru5+-ions, which form elongated, edge-sharing Ru4-tetrahedra. Substituting La3+ by the smaller Nd3+ results in shorter Ru–Ru distances and leads to an increase of the frustrated magnetic interaction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    B. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. France, 4077 (1967)

  2. 2.

    M. Marezio, P.D. Dernier, J. Chenavas, J.C. Joubert, J. Solid State Chem. 6, 16 (1973)

  3. 3.

    B. Bochu, J.C. Joubert, A. Collomb, B. Ferrand, D. Samaras, J. Magn. Magn. Mater. 15–18, 1319 (1980)

  4. 4.

    U. Schwingenschlögl, V. Eyert, U. Eckern, Chem. Phys. Let. 370, 719 (2003)

  5. 5.

    Y. Ozaki, M. Ghedira, J. Chenavas, J.C. Joubert, M. Marezio, Acta Crystallogr., Sect B 33, 3615 (1977)

  6. 6.

    W. Kobayashi, I. Terasaki, J. Takeya, I. Tsukada, Y. Ando, J. Phys. Soc. Jpn. 73, 2373 (2004)

  7. 7.

    S.G. Ebbinghaus, A. Weidenkaff, R.J. Cava, J. Solid State Chem. 167, 126 (2002)

  8. 8.

    J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, R.C. Albers, J. Am. Chem. Soc. 113, 5135 (1991)

  9. 9.

    S.G. Ebbinghaus, Z. Hu, A. Reller, J. Solid State Chem. 156, 194 (2001)

  10. 10.

    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

  11. 11.

    A.P. Ramirez, G. Lawes, D. Li, M.A. Subramanian, Solid State Commun. 131, 251 (2004)

  12. 12.

    J. Muller, A. Haouzi, C. Laviron, M. Labeau, J.C. Joubert, Mat. Res. Bull. 21, 1131 (1986)

  13. 13.

    M. Labeau, B. Bochu, J.C. Joubert, J. Chenavas, J. Solid State Chem. 33, 257 (1980)

  14. 14.

    N.F. Mott, Philos. Mag. 19, 835 (1969)

  15. 15.

    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

  16. 16.

    M.A. Subramanian, D. Li, N. Duan, B. A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

  17. 17.

    B. Renner, S.G. Ebbinghaus, A. Reller, D. Schrupp, H.-A. Krug von Nidda, M. Heinrich, P. Lunkenheimer, M. Schetter, Mat. Res. Soc. Symp. Proc. 755, DD4.9.1-DD4.9.5 (2003)

  18. 18.

    H. Vincent, B. Bochu, J.J. Aubert, J.C. Joubert, M. Marezio, J. Solid State Chem. 24, 245 (1978)

  19. 19.

    B. Renner, P. Lunkenheimer, M. Schetter, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Appl. Phys. 96, 4400 (2004)

  20. 20.

    A. Heinrich, B. Renner, R. Lux, S.G. Ebbinghaus, A. Reller, B. Stritzker, Thin Solid Films 479, 12 (2005)

  21. 21.

    E.J. Felten, J. Inorg. Nucl. Chem. 29, 1168 (1967)

  22. 22.

    S.G. Ebbinghaus, Prog. Solid State Chem. 35, 421 (2007)

  23. 23.

    J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B 38, 11322 (1988)

  24. 24.

    P. Fischer, G. Frey, M. Koch, M. Könnecke, V. Pomjakushin, J. Schefer, R. Thut, N. Schlumpf, R. Bürge, U. Greuter, S. Bondt, E. Berruyer, Physica B: Condensed Matter 276–278, 146 (2000)

  25. 25.

    S.N. Ruddlesden, P. Popper, Acta Cryst. 10, 538 (1957)

  26. 26.

    S.N. Ruddlesden, P. Popper, Acta Cryst. 11, 54 (1958)

  27. 27.

    F. Lichtenberg, A. Herrnberger, K. Wiedenmann, J. Mannhart, Prog. Solid State Chem. 29, 1 (2001)

  28. 28.

    P. Boullay, D. Mercurio, A. Bencan, A. Meden, G. Drazic, M. Kosec, J. Solid State Chem. 170, 294 (2003)

  29. 29.

    P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Science 297, 2237 (2002)

  30. 30.

    S.K. Malik, D.C. Kundaliya, R.D. Kale, Solid State Commun. 135, 166 (2005)

  31. 31.

    S.G. Ebbinghaus, Acta Cryst. C 61, i96 (2005)

  32. 32.

    V. Eyert, S.G. Ebbinghaus, Prog. Solid State Chem. 35, 433 (2007)

  33. 33.

    V. Eyert, S.G. Ebbinghaus, T. Kopp, Phys. Rev. Lett. 96, 256401 (2006)

  34. 34.

    G. Cao, S. McCall, Z.X. Zhou, C.S. Alexander, J.E. Crow, R.P. Guertin, C.H. Mielke, Phys. Rev. B 63, 144427 (2001)

  35. 35.

    L.L. Kochergina, O.I. Kondratov, Yu. S. Shorikov, V.V. Fomichev, K.I. Petrov, Russ. J. Inor. Chem. 27, 1137 (1982)

  36. 36.

    S. Dixon, J. Marr, E.E. Lachowski, J.A. Gard, F.P. Glasser, Mat. Res. Bull. 15, 1811 (1980)

  37. 37.

    W.G. Mumme, A.D. Wadsley, Acta Cryst. B 24, 1327 (1968)

  38. 38.

    M.P. Pechini, U.S. Patent 3,330,697 (1967)

  39. 39.

    J.B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, New York, 1963)

  40. 40.

    Y. Wang, J. Lin, Y. Du, R. Qin, B. Han, C.K. Loong, Angew. Chem. Int. Ed. 39, 2730 (2000)

  41. 41.

    E. Gaudin, G. Goglio, A. Besnard, J. Darriet, J. Solid State Chem. 175, 124 (2003)

  42. 42.

    S.G. Ebbinghaus, J. Solid State Chem. 177, 817 (2004)

  43. 43.

    T. Götzfried, A. Reller, S.G. Ebbinghaus, Solid State Sci. 6, 1205 (2004)

  44. 44.

    T. Götzfried, A. Reller, S.G. Ebbinghaus, Inorg. Chem. 44, 6550 (2005)

  45. 45.

    J.E. Greedan, J. Mater. Chem. 11, 37 (2001)

  46. 46.

    S.G. Ebbinghaus, E.-W. Scheidt, T. Götzfried, Phys. Rev. B 75, 144414 (2007)

  47. 47.

    M. Kotani, J. Phys. Soc. Jpn. 4, 293 (1949)

  48. 48.

    S.G. Ebbinghaus, C. Erztoument, I. Marozau, J. Solid State Chem. 180, 3393 (2007)

  49. 49.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

  50. 50.

    W.G. Penney, R. Schlapp, Physical Review 41, 194 (1932)

Download references

Author information

Correspondence to S.G. Ebbinghaus.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ebbinghaus, S., Riegg, S., Götzfried, T. et al. Co-operative and frustration effects in novel perovskite-related phases. Eur. Phys. J. Spec. Top. 180, 91–116 (2009) doi:10.1140/epjst/e2010-01213-4

Download citation

Keywords

  • Perovskite
  • Ruthenium
  • European Physical Journal Special Topic
  • CaCu
  • Localize Magnetic Moment