Advertisement

The European Physical Journal Special Topics

, Volume 180, Issue 1, pp 61–89 | Cite as

Colossal dielectric constants in transition-metal oxides

  • P. LunkenheimerEmail author
  • S. Krohns
  • S. Riegg
  • S.G. Ebbinghaus
  • A. Reller
  • A. Loidl
Regular Article

Abstract.

Many transition-metal oxides show very large (“colossal”) magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today’s most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2−xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.

Keywords

Dielectric Constant European Physical Journal Special Topic Depletion Layer Static Dielectric Constant Ceramic CCTO 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    ISI Web of Science, Feb. 2010Google Scholar
  4. 4.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, Phys. Rev. B 65, 214112 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nature Mat. 3, 774 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)CrossRefGoogle Scholar
  13. 13.
    I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1873)Google Scholar
  16. 16.
    K.W. Wagner, Arch. Electrotech. 2, 371 (1914)CrossRefGoogle Scholar
  17. 17.
    A.R. Hippel, Dielectric Materials and Applications (Artech House, Boston, 1954)Google Scholar
  18. 18.
    J. Ross Macdonald, Impedance Spectroscopy (John Wiley and Sons, New York, 1987)Google Scholar
  19. 19.
    A.P. Ramirez, G. Lawes, V. Butko, M.A. Subramanian, C.M. Varma, e-print [arXiv:cond-mat/0209498]Google Scholar
  20. 20.
    B.A. Bender, M.-J. Pan, Mat. Sci. Eng. B 117, 339 (2005)CrossRefGoogle Scholar
  21. 21.
    J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li, J.F. Wang, Appl. Phys. Lett. 87, 142901 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, J. Phys. D: Appl. Phys. 38, 1824 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    S.V. Kalinin, J. Shin, G. M. Veith, A.P. Baddorf, M.V. Lobanov, H. Runge, M. Greenblatt, Appl. Phys. Lett. 86, 102902 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    P. Fiorenza, R. Lo Nigro, C. Bongiorno, V. Raineri, M.C. Ferarrelli, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 92, 182907 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    C.C. Wang, L.W. Zhang, Appl. Phys. Lett. 88, 042906 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    G. Deng, T. Yamada, P. Muralt, Appl. Phys. Lett. 91, 202903 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Appl. Phys. Lett. 91, 022910 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 084107 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    S. Krohns, J. Lu, P. Lunkenheimer, V. Brize, C. Autret-Lambert, M. Gervais, F. Gervais, F. Bouree, F. Porcher, A. Loidl, Eur. Phys. J. B 72, 173 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    J. Sebald, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, S. Riegg, A. Reller, A. Loidl, Solid State Commun. 150, 857 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    B. Shri Parkash, K.B.R. Varma, Physica B 382, 312 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    B. Shri Parkash, K.B.R. Varma, Physica B 403, 2246 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    G.A. Samara, W.F. Hammetter, E.L. Venturini, Phys. Rev. B 41, 8974 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    C.M. Rey, H. Mathias, L.R. Testardi, S. Skirius, Phys. Rev. B 45, 10 639 (1992)CrossRefGoogle Scholar
  35. 35.
    G.P. Mazzara, S. Skirius, G. Cao, G. Chern, R.J. Clark, J.E. Crow, H. Mathias, J.W. O’Reilly, L.R. Testardi, Phys. Rev. B 47, 8119 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    G. Chern, L.R. Song, J.B. Shi, Physica C 253, 97 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    J.B. Shi, Physica C 305, 35 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    G. Chern, W.K. Hsieh, M.F. Tai, K.S. Hsung, Phys. Rev. B 58, 1252 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    J. Rivas, B. Rivas-Murias, A. Fondado, J. Mira, M.A. Senaris-Rodriguez, Appl. Phys. Lett. 85, 6224 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    N. Biškup, A. de Andrés, J.L. Martinez, C. Perca, Phys. Rev. B 72, 024115 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    J.L. Cohn, M. Peterca, J.J. Neumeier, Phys. Rev. B 70, 214433 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    T. Park, Z. Nussinov, K.R.A. Hazzard, V.A. Sidorov, A.V. Balatsky, J.L. Sarrao, S.-W. Cheong, M.F. Hundley, J.-S. Lee, Q.X. Jia, J.D. Thompson, Phys. Rev. Lett. 94, 017002 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kitô, Nature 436, 1136 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    X.Q. Liu, S.Y. Wu, X.M. Chen, H.Y. Zhu, J. Appl. Phys. 104, 054114 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    J. Sichelschmidt, M. Paraskevopoulos, M. Brando, R. Wehn, D. Ivannikov, F. Mayr, K. Pucher, J. Hemberger, A. Pimenov, H.-A. Krug von Nidda, P. Lunkenheimer, V. Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Euro. Phys. J. B 20, 7 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    V. Bobnar, P. Lunkenheimer, J. Hemberger, A. Loidl, F. Lichtenberg, J. Mannhart, Phys. Rev. B 65, 155115 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    V. Bobnar, P. Lunkenheimer, M. Paraskevopoulos, A. Loidl, Phys. Rev. B 65, 184403 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    A.I. Ritus, A.V. Pronin, A.A. Volkov, P. Lunkenheimer, A. Loidl, A.S. Shcheulin, A.I. Ryskin, Phys. Rev. B 65, 165209 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    P. Lunkenheimer, T. Rudolf, J. Hemberger, A. Pimenov, S. Tachos, F. Lichtenberg, A. Loidl, Phys. Rev. B 68, 245108 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    B. Renner, P. Lunkenheimer, M. Schetter, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Appl. Phys. 96, 4400 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    P. Lunkenheimer, T. Götzfried, R. Fichtl, S. Weber, T. Rudolf, A. Loidl, A. Reller, S.G. Ebbinghaus, J. Solid State Chem. 179, 3965 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    S. Krohns, P. Lunkenheimer, Ch. Kant, A.V. Pronin, H.B. Brom, A.A. Nugroho, M. Diantoro, A. Loidl, Appl. Phys. Lett. 94, 122903 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    S. Krohns, P. Lunkenheimer, A. Loidl, IOP Conf. Ser.: Mat. Sci. Eng. 8, 012014 (2010)CrossRefGoogle Scholar
  54. 54.
    J. Halblützel, Helv. Phys. Acta. 12, 489 (1939)Google Scholar
  55. 55.
    M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Clarendon Press, Oxford, 1979)Google Scholar
  56. 56.
    M. Fujimoto, W.D. Kingery, J. Am. Ceram. Soc. 68, 169 (1985)CrossRefGoogle Scholar
  57. 57.
    C.-F. Yang, Jpn. J. Appl. Phys. 35, 1806 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    A.J. Moulson, J.M. Herbert, Electroceramics (Chapman & Hall, London, 1990)Google Scholar
  59. 59.
    D. Starešinić, K. Biljaković, P. Lunkenheimer, A. Loidl, Solid State Commun. 137, 241 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    F. Schrettle, P. Lunkenheimer, J. Hemberger, V. Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. Lett. 102, 207208 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    L.E. Cross, Ferroelectrics 76, 241 (1987)Google Scholar
  62. 62.
    A.A. Bokov, Z.-G. Ye, J. Mat. Sci. 41, 31 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)ADSCrossRefGoogle Scholar
  64. 64.
    V. Westphal, W. Kleemann, M.D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992)ADSCrossRefGoogle Scholar
  65. 65.
    B.E. Vugmeister, H. Rabitz, Phys. Rev. B 57, 7581 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    T. Portengen, T. Östreich, L.J. Sham, Phys. Rev. B 54, 17452 (1996)ADSCrossRefGoogle Scholar
  67. 67.
    C.D. Batista, Phys. Rev. Lett. 89, 166403 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    A.P. Kampf, M. Sekania, G.I. Japaridze, P. Brune, J. Phys.: Condens. Matter 15, 5895 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    P. Monceau, F. Ya. Nad, S. Brazovskii, Phys. Rev. Lett. 86, 4080 (2001)ADSCrossRefGoogle Scholar
  70. 70.
    K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593 (1979)ADSCrossRefGoogle Scholar
  71. 71.
    R. Viana, P. Lunkenheimer, J. Hemberger, R. Böhmer, A. Loidl, Phys. Rev. B 50, 601 (1994)ADSCrossRefGoogle Scholar
  72. 72.
    J. Dumas, C. Schlenker, J. Marcus, R. Buder, Phys. Rev. Lett. 50, 757 (1983)ADSCrossRefGoogle Scholar
  73. 73.
    G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)ADSCrossRefGoogle Scholar
  74. 74.
    R.M. Fleming, R.J. Cava, L.F. Schneemeyer, E.A. Rietman, R.G. Dunn, Phys. Rev. B 33, 5450 (1986)ADSCrossRefGoogle Scholar
  75. 75.
    R.J. Cava, P. Littlewood, R.M. Fleming, R.G. Dunn, E.A. Rietman, Phys. Rev. B 33, 2439 (1985)ADSCrossRefGoogle Scholar
  76. 76.
    P.B. Littlewood, Phys. Rev. B 36, 3108 (1987)ADSCrossRefGoogle Scholar
  77. 77.
    A.R. Long, Adv. Phys. 31, 553 (1982)ADSCrossRefGoogle Scholar
  78. 78.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)ADSCrossRefGoogle Scholar
  79. 79.
    A.K. Jonscher, Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
  80. 80.
    A.K. Jonscher, Dielectric Relaxations in Solids (Chelsea Dielectrics Press, London, 1983)Google Scholar
  81. 81.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  82. 82.
    M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)ADSCrossRefGoogle Scholar
  83. 83.
    G.E. Pike, Phys. Rev. B 6, 1572 (1972)ADSCrossRefGoogle Scholar
  84. 84.
    P. Lunkenheimer, A. Loidl, C.R. Ottermann, K. Bange, Phys. Rev. B 44, 5927 (1991)ADSCrossRefGoogle Scholar
  85. 85.
    P. Lunkenheimer, M. Resch, A. Loidl, Y. Hidaka, Phys. Rev. Lett. 69, 498 (1992)ADSCrossRefGoogle Scholar
  86. 86.
    A. Seeger, P. Lunkenheimer, J. Hemberger, A.A. Mukhin, V. Yu. Ivanov, A.M. Balbashov, A. Loidl, J. Phys.: Cond. Matter 11, 3273 (1999)ADSCrossRefGoogle Scholar
  87. 87.
    T.G. Castner, Phil. Mag. 42, 873 (1980)CrossRefGoogle Scholar
  88. 88.
    M. Capizzi, G.A. Thomas, F. DeRosa, R.N. Bhatt, T.M. Rice, Phys. Rev. Lett. 44, 1019 (1980)ADSCrossRefGoogle Scholar
  89. 89.
    H.F. Hess, K. Deconde, T.F. Rosenbaum, G.A. Thomas, Phys. Rev. B 25, 5578 (1982)ADSCrossRefGoogle Scholar
  90. 90.
    A. Pimenov, C. Hartinger, A. Loidl, A.A. Mukhin, V. Yu. Ivanov, A.M. Balbashov, Phys. Rev. B 59, 12419 (1999)ADSCrossRefGoogle Scholar
  91. 91.
    B. Kundys, N. Bellido, C. Martin, Ch. Simon, Eur. Phys. J. B 52, 199 (2006)ADSCrossRefGoogle Scholar
  92. 92.
    N.F. Mott, Metal-Insulator-Transitions (Taylor & Francis, London, 1990)Google Scholar
  93. 93.
    W.L. McMillan, Phys. Rev. B 24, 2739 (1981)ADSCrossRefGoogle Scholar
  94. 94.
    R.N. Bhatt, Phil. Mag. B 50, 189 (1984)Google Scholar
  95. 95.
    C. Aebischer, D. Baeriswyl, R.M. Noack, Phys. Rev. Lett. 86, 468 (2001)ADSCrossRefGoogle Scholar
  96. 96.
    F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  97. 97.
    T. Van Dijk, A.J. Burggraaf, Phys. Status Solidi A 63, 229 (1981)ADSCrossRefGoogle Scholar
  98. 98.
    M.J. Verkerk, B.J. Middelhuis, A.J. Burggraaf, Solid State Ionics 6, 159 (1982)CrossRefGoogle Scholar
  99. 99.
    H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)ADSCrossRefGoogle Scholar
  100. 100.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)ADSCrossRefGoogle Scholar
  101. 101.
    P. Simon, Y. Gogotsi, Nature Mat. 7, 845 (2008)ADSCrossRefGoogle Scholar
  102. 102.
    Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, S. Katano, Phys. Rev. Lett. 77, 904 (1996)ADSCrossRefGoogle Scholar
  103. 103.
    M. Uehara, S. Mori, C. H. Chen, S.-W. Cheong, Nature 399, 560 (1999)ADSCrossRefGoogle Scholar
  104. 104.
    A. Moreo, S. Yunoki, E. Dagotto, Science 283, 2034 (1999)CrossRefGoogle Scholar
  105. 105.
    E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)ADSCrossRefGoogle Scholar
  106. 106.
    V.J. Emery, S.A. Kivelson, Physica C 209, 597 (1993)ADSCrossRefGoogle Scholar
  107. 107.
    J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995)ADSCrossRefGoogle Scholar
  108. 108.
    J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu, G. Xu, M. Fujita, K. Yamada, Nature 429, 534 (2004)ADSCrossRefGoogle Scholar
  109. 109.
    D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G.D. Gu, J.M. Tranquada, Nature 440, 1170 (2006)ADSCrossRefGoogle Scholar
  110. 110.
    C.H. Chen, S.W. Cheong, A.S. Cooper, Phys. Rev. Lett. 71, 2461 (1993)ADSCrossRefGoogle Scholar
  111. 111.
    V. Sachan, D.J. Buttrey, J.M. Tranquada, J.E. Lorenzo, G. Shirane, Phys. Rev. B 51, 12742 (1995)ADSCrossRefGoogle Scholar
  112. 112.
    S.H. Lee, S.W. Cheong, Phys. Rev. Lett. 79, 2514 (1997)ADSCrossRefGoogle Scholar
  113. 113.
    J.M. Tranquada, D.J. Buttrey, V. Sachan, Phys. Rev. B 54, 12318 (1996)ADSCrossRefGoogle Scholar
  114. 114.
    S. Yamanouchi, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 83, 5555 (1999)ADSCrossRefGoogle Scholar
  115. 115.
    C.H. Du, M.E. Ghazi, Y. Su, I. Pape, P.D. Hatton, S.D. Brown, W.G. Stirling, M.J. Cooper, S.W. Cheong, Phys. Rev. Lett. 84, 3911 (2000)ADSCrossRefGoogle Scholar
  116. 116.
    S.H. Lee, J.M. Tranquada, K. Yamada, D.J. Buttrey, Q. Li, S.W. Cheong, Phys. Rev. Lett. 88, 126401 (2002)ADSCrossRefGoogle Scholar
  117. 117.
    J.M. Tranquada, K. Nakajima, M. Braden, L. Pintschovius, R.J. McQueeney, Phys. Rev. Lett. 88, 075505 (2002)ADSCrossRefGoogle Scholar
  118. 118.
    K. Ishizaka, T. Arima, Y. Murakami, R. Kajimoto, H. Yoshizawa, N. Nagaosa, Y. Tokura, Phys. Rev. Lett. 92, 196404 (2004)ADSCrossRefGoogle Scholar
  119. 119.
    F. Rivadulla, M.A. López-Quintela, L.E. Hueso, C. Jardón, A. Fondado, J. Rivas, M.T. Causa, R.D. SánchezSolid State Commun. 110, 179 (1999)ADSCrossRefGoogle Scholar
  120. 120.
    S. Mercone, A. Wahl, A. Pautrat, M. Pollet, C. Simon, Phys. Rev. B 69, 174433 (2004)ADSCrossRefGoogle Scholar
  121. 121.
    J. Mira, A. Castro-Couceiro, M. Sánchez-Andújar, B. Rivas-Murias, J. Rivas, M.A. Señaris-Rodríguez, J. Phys. D: Appl. Phys. 39, 1192 (2006)ADSCrossRefGoogle Scholar
  122. 122.
    M. Filippi, B. Kundys, S. Agrestini, W. Prellier, H. Oyanagi, N.L. Saini, J. Appl. Phys. 106, 104116 (2009)ADSCrossRefGoogle Scholar
  123. 123.
    J.L. García-Muñoz, C. Frontera, B. Rivas-Murias, J. Mira, J. Appl. Phys. 105, 084116 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    G. Deng, Z. He, P. Muralt, J. Appl. Phys. 105, 084106 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)ADSCrossRefGoogle Scholar
  126. 126.
    U. Schneider, P. Lunkenheimer, A. Pimenov, R. Brand, A. Loidl, Ferroelectrics 249, 89 (2001)CrossRefGoogle Scholar
  127. 127.
    Ch. Kant, T. Rudolf, F. Mayr, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 77, 045131 (2008)ADSCrossRefGoogle Scholar
  128. 128.
    Y. Lin, Y.B. Chen, T. Garret, S.W. Liu, C.L. Chen, L. Chen, R.P. Bontchev, A. Jacobson, J.C. Jiang, E.I. Meletis, Appl. Phys. Lett. 81, 631 (2002)ADSCrossRefGoogle Scholar
  129. 129.
    R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragala, M. Losurdo, M.M. Giangregorio, G. Bruno, V. Raineri, P. Fiorenza, J. Phys. Chem. B 110, 17460 (2006)CrossRefGoogle Scholar
  130. 130.
    P. Fiorenza, R.L. Nigro, A. Sciuto, P. Delugas, V. Raineri, R.G. Toro, M.R. Catalano, G. Malandrino, J. Appl. Phys. 105, 061634 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)ADSCrossRefGoogle Scholar
  132. 132.
    L. Zhang, Z.-J. Tang, Phys. Rev. B 70, 174306 (2004)ADSCrossRefGoogle Scholar
  133. 133.
    A. Tselev, C.M. Brooks, S.M. Anlage, H. Zheng, L. Salamanca-Riba, R. Ramesh, M.A. Subramanian, Phys. Rev. B 70, 144101 (2004)ADSCrossRefGoogle Scholar
  134. 134.
    J. Yang, M. Shen, L. Fang, Mat. Lett. 59, 3990 (2005)CrossRefGoogle Scholar
  135. 135.
    M.C. Ferrarelli, D.C. Sinclair, A.R. West, H.A. Dabkowska, A. Dabkowski, G.M. Luke, J. Mat. Chem. 19, 5916 (2009)CrossRefGoogle Scholar
  136. 136.
    P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 91, 207601 (2003)ADSCrossRefGoogle Scholar
  137. 137.
    B.I. Shklovskii, A.L. Efros, Zh. Eksp. Teor. Fiz. 81, 406 (1981)Google Scholar
  138. 138.
    W. Kobayashi, I. Terasaki, Physica B 329, 771 (2003)ADSCrossRefGoogle Scholar
  139. 139.
    R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)ADSCrossRefGoogle Scholar
  140. 140.
    S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, S.-J.L. Kang, Appl. Phys. Lett. 88, 091917 (2006)ADSCrossRefGoogle Scholar
  141. 141.
    M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)ADSCrossRefGoogle Scholar
  142. 142.
    M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 91, 132911 (2007)ADSCrossRefGoogle Scholar
  143. 143.
    V. Brize, C. Autret-Lambert, J. Wolfman, M. Gervais, P. Simon, F. Gervais, Solid State Science 11, 875 (2009)ADSCrossRefGoogle Scholar
  144. 144.
    J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)ADSCrossRefGoogle Scholar
  145. 145.
    J.J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)ADSCrossRefGoogle Scholar
  146. 146.
    X.L. Zhou, P.Y. Du, Acta Phys. Sin. 54, 354 (2005)Google Scholar
  147. 147.
    M.C. Ferrarelli, T.B. Adams, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 89, 212904 (2006)ADSCrossRefGoogle Scholar
  148. 148.
    P. Lunkenheimer, G. Knebel, A. Pimenov, G.A. Emel’chenko, A. Loidl, Z. Phys. B 99, 507 (1996)ADSCrossRefGoogle Scholar
  149. 149.
    T. Götzfried, A. Reller, S.G. Ebbinghaus, Inorg. Chem. 44, 6550 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • P. Lunkenheimer
    • 1
    Email author
  • S. Krohns
    • 1
  • S. Riegg
    • 2
  • S.G. Ebbinghaus
    • 3
  • A. Reller
    • 2
  • A. Loidl
    • 1
  1. 1.Experimental Physics V, Center for Electronic Correlations and MagnetismUniversity of AugsburgAugsburgGermany
  2. 2.Solid State Chemistry, University of AugsburgAugsburgGermany
  3. 3.Solid State Chemistry, Martin-Luther University Halle-WittenbergHalleGermany

Personalised recommendations