The European Physical Journal Special Topics

, Volume 179, Issue 1, pp 25–32 | Cite as

Universal and non-universal aspects of wet granular matter under vertical vibrations

Open Access
Regular Article


The phase diagram of vertically vibrated wet granular matter is investigated by both experiments and molecular dynamics type simulations, with a focus on the coexistence regime of the fluid and gas phases. Phase diagrams measured at various parameters including the rupture energy of liquid bridges, are presented. While for elastic grains, the transition from the fluid to the fluid-gas coexistence phase is found to be determined only by the rupture energy of liquid bridges [Fingerle et al. New J. Phys. 10, 053020 (2008)], inelasticity is found to introduce non-universal features into the phase diagram, which are also affected by the grain size.


Phase Diagram European Physical Journal Special Topic Transition Line Liquid Bridge Liquid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)CrossRefADSGoogle Scholar
  2. 2.
    J. Duran, Sands, Powders and Grains An Introduction to the Physics of Granular Materials) 1st edn. (Springer-Verlag, New York, Inc., 2000)Google Scholar
  3. 3.
    F. Melo, Phys. Rev. Lett. 75, 3838 (1995)CrossRefADSGoogle Scholar
  4. 4.
    W. Losert, D.G.W. Cooper, J.P. Gollub, Phys. Rev. E 59, 5855 (1999)CrossRefADSGoogle Scholar
  5. 5.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996)CrossRefADSGoogle Scholar
  6. 6.
    A. Goetzendorfer, J. Kreft, C.A. Kruelle, I. Rehberg, D. Svensek, Phys. Rev. Lett. 95, 135704 (2005)CrossRefADSGoogle Scholar
  7. 7.
    A. Goetzendorfer, C.A. Kruelle, I. Rehberg, D. Svensek, Phys. Rev. Lett. 97, 198001 (2005)CrossRefADSGoogle Scholar
  8. 8.
    I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)CrossRefADSGoogle Scholar
  9. 9.
    K. Huang, G.Q. Miao, P. Zhang, R.J. Wei, Phys. Rev. E 73, 041302 (2006)CrossRefADSGoogle Scholar
  10. 10.
    P.M. Reis, R.A. Ingale, M.D. Shattuck, Phys. Rev. Lett. 96, 258001 (2006)CrossRefADSGoogle Scholar
  11. 11.
    A. Prevost, P. Melby, D.A. Egolf, J.S. Urbach, Phys. Rev. E 70, 050301 (2004)CrossRefADSGoogle Scholar
  12. 12.
    R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002)CrossRefADSGoogle Scholar
  13. 13.
    L. Bocquet, E. Charlaix, F. Restagno, C. R. Physique 3, 207 (2002)CrossRefADSGoogle Scholar
  14. 14.
    S. S. Herminghaus, Adv. Phys. 54, 221 (2005)CrossRefADSGoogle Scholar
  15. 15.
    N. Mitarai, F. Nori, Adv. Phys. 55, 1 (2006)CrossRefADSGoogle Scholar
  16. 16.
    M. Scheel, D. Geromichalos, S. Herminghaus, J. Phys. Condens. Matter 16, S4213 (2004)CrossRefADSGoogle Scholar
  17. 17.
    M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel, A. Sheppard, B. Breidenbach, S. Herminghaus, Nat. Mat. 7, 189 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Fingerle, K. Roeller, K. Huang, S. Herminghaus, New J. Phys. 10, 053020 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Max-Planck-Institute for Dynamics and Self-OrganizationGöttingenGermany
  2. 2.Experimentalphysik V, Universität BayreuthBayreuthGermany

Personalised recommendations