A parametric simulation method for discrete dislocation dynamics

  • M. BenešEmail author
  • J. Kratochvíl
  • J. Křištan
  • V. Minárik
  • P. Pauš


A new computer simulation method employed in discrete dislocation dynamics is presented. The article summarizes results of an application of the method to elementary interactions among glide dislocations and dipolar dislocation loops. The glide dislocations are represented by parametrically described curves moving in glide planes whereas the dipolar loops are treated as rigid objects. All mutual force interactions are considered in the models. As a consequence, the computational complexity rapidly increases with the number of objects considered. This difficulty is treated by advanced computational techniques such as suitable accurate numerical methods and parallel implementation of the algorithms. Therefore the method is able to simulate particular phenomena of dislocation dynamics which occur in crystalline solids deformed by single slip: generation of glide dislocations from the Frank-Read source, interaction of glide dislocations with obstacles, their encounters in channels of the bands, sweeping of dipolar loops by glide dislocations and a loop clustering.


European Physical Journal Special Topic Burger Vector Dislocation Loop Resolve Shear Stress Rigid Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Hirth, J. Lothe, Theory of Dislocations (John Willey, New York, 1982)Google Scholar
  2. 2.
    T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publishers Group, The Netherlands, 1987)Google Scholar
  3. 3.
    J. Kratochvíl, M. Saxlová, Phys. Scr. T49B, 399 (1993)CrossRefADSGoogle Scholar
  4. 4.
    F. Kroupa, Phys. Stat. Sol. 9, 27 (1965)CrossRefGoogle Scholar
  5. 5.
    J. Kratochvíl, F. Kroupa, L. Kubin, The Sweeping of Dipolar Loops in Cyclic Deformation: Kinetic Diagrams, in Proceedings of the 20th Risoe Int. Symposium on Material Science: Deformation-Induced Microstructures: Analysis and Relation to Properties (Risoe National Laboratory, Roskilde, Denmark, 1999), p. 387Google Scholar
  6. 6.
    M. Saxlová, J. Kratochvíl, J. Zatloukal, Mater. Sci. Eng. A234–236, 205 (1997)Google Scholar
  7. 7.
    J. Kratochvíl, Mater. Sci. Eng. A 309–310, 331 (2001)Google Scholar
  8. 8.
    B. Devincre, L. Kubin, Mater. Sci. Eng. A 8–14, 234 (1997)Google Scholar
  9. 9.
    M. Fivel, G. Canova, Modelling Simul. Mater. Sci. Eng. 7, 753 (1999)CrossRefADSGoogle Scholar
  10. 10.
    M. Rhee, H. Zbib, J. Hirth, H. Huang, T. de la Rubia, Modelling Simul. Mater. Sci. Eng. 6, 467 (1998)CrossRefADSGoogle Scholar
  11. 11.
    M. Tang, L. Kubin, G. Canova, Acta Mater. 46, 3221 (1998)CrossRefGoogle Scholar
  12. 12.
    N. Ghoniem, L. Sun, Phys. Rev. B 60, 128 (1999)CrossRefADSGoogle Scholar
  13. 13.
    N. Ghoniem, J. Huang, Z. Wang, Phil. Mag. Lett. 82, 55 (2002)CrossRefADSGoogle Scholar
  14. 14.
    V. Minárik, J. Kratochvól, K. Mikula, M. Beneš, Numerical Simulation of Dislocation Dynamics, in Numerical Mathematics and Advanced Applications, ENUMATH 2003 (peer reviewed proceedings), edited by M. Feistauer, V. Dolejší, P. Knobloch, K. Najzar (Springer Verlag, 2004), p. 631, ISBN 3-540-21460-7Google Scholar
  15. 15.
    V. Minárik, J. Kratochvíl, K. Mikula, Numerical Simulation of Dislocation Dynamics by Means of Parametric Approach, in Proceedings of the Czech Japanese Seminar in Applied Mathematics, edited by M. Beneš, J. Mikyška, T. Oberhuber, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (2005), p. 128, ISBN 80-01-03181-0Google Scholar
  16. 16.
    Š. Verecký, J. Kratochvíl, F. Kroupa, Phys. Stat. Sol. (a) 191, 418 (2002)CrossRefADSGoogle Scholar
  17. 17.
    M. Beneš, Appl. Math. 48, 437 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    K. Deckelnick, G. Dziuk, C. Elliott, Acta Numer. 14, 139 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Ševčovič, Qualitative and quantitative aspects of curvature driven flows of planar curves, in Topics on Partial Differential Equations, edited by P. Kaplický, Š. Nečasová, Lecture Notes Vol. 2, Jindřich Nečas Center for Mathematical Modelling, Faculty of Mathematics and Physics, Charles University in Prague (MatFyzPress, Prague, 2007), p. 55Google Scholar
  20. 20.
    P. Pauš, M. Beneš, Kybernetika (accepted) (2009)Google Scholar
  21. 21.
    S. Angenent, M. Gurtin, Arch. Rat. Mech. Anal. 108, 323 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    G. Dziuk, Math. Models Meth. Appl. Sci. 4, 589 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    K. Mikula, D. Ševčovič, Comput. Vis. Sci. 6, 211 (2004), ISSN 1432-9360, CrossRefMathSciNetGoogle Scholar
  24. 24.
    V. Minárik, M. Beneš, J. Kratochvíl, J. Appl. Phys. (submitted) (2008)Google Scholar
  25. 25.
    S. Yazaki, Kybernetika 43, 913 (2007)zbMATHMathSciNetGoogle Scholar
  26. 26.
    V. Minárik, J. Kratochvíl, Kybernetika 43, 841 (2007)zbMATHMathSciNetGoogle Scholar
  27. 27.
    H. Mughrabi, edited by O. Brulin and R.K.T. Hsieh, Continuum Models of Discrete Systems (1981), p. 241Google Scholar
  28. 28.
    H. Mughrabi, Acta Metall. 31, 1367 (1983)CrossRefGoogle Scholar
  29. 29.
    P. Neumann, Phys. Scr. T19, 537 (1987)CrossRefADSGoogle Scholar
  30. 30.
    K. Differt, U. Essmann, Mater. Sci. Eng. A 164, 295 (1993)CrossRefGoogle Scholar
  31. 31.
    K.D.U. Essmann, Mater. Sci. Eng. A 208, 56 (1996)CrossRefGoogle Scholar
  32. 32.
    H. Mughrabi, F. Pschenitzka, Phil. Mag. 85, 3029 (2006)CrossRefADSGoogle Scholar
  33. 33.
    P. Hähner, Scr. Mater. 34, 435 (1996)CrossRefGoogle Scholar
  34. 34.
    B.T.a.C.H. P. Hähner, Acta Mater. 46, 5073 (1998)CrossRefGoogle Scholar
  35. 35.
    H. Mughrabi, F. Pschenitzka, Mater. Sci. Eng. A 483–484, 469 (2008)Google Scholar
  36. 36.
    R. de Wit, Phys. Stat. Sol. 20, 567 (1967)CrossRefGoogle Scholar
  37. 37.
    J. Křištan, J. Kratochvíl, V. Minárik, M. Beneš, Modelling Simul. Mater. Sci. Eng. 17, 045009 (2009)CrossRefGoogle Scholar
  38. 38.
    T. Oberhuber, Kybernetika 43, 855 (2007)zbMATHMathSciNetGoogle Scholar
  39. 39.
    J. Mach, Application of Non-linear Diffusion in Algorithms of Mathematical Visualization, in Proceedings of the Czech Japanese Seminar in Applied Mathematics 2006, edited by M. Beneš, M. Kimura, T. Nakaki, Faculty of Mathematics, Kyushu University Fukuoka, COE Lecture Note, Vol. 6 (2007), p. 156, ISSN 1881-4042Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • M. Beneš
    • 1
    Email author
  • J. Kratochvíl
    • 2
  • J. Křištan
    • 3
  • V. Minárik
    • 1
  • P. Pauš
    • 3
  1. 1.Czech Technical University Prague, Faculty of Nuclear Sciences and Physical EngineeringPragueCzech Republic
  2. 2.Czech Technical University Prague, Faculty of Civil EngineeringPragueCzech Republic
  3. 3.Charles University, Faculty of Mathematics and PhysicsPragueCzech Republic

Personalised recommendations