Advertisement

Methods to extract interfacial free energies of flat and curved interfaces from computer simulations

  • M. Schrader
  • P. Virnau
  • D. Winter
  • T. Zykova-Timan
  • K. BinderEmail author
Article

Abstract

When a computer simulation of a model system that can exist in two phases (e.g., vapor and liquid at the condensation transition, or solid and liquid at the melting transition) is constrained such that the order parameter distinguishing the two phases takes a value in the two-phase coexistence region, the thermodynamic potential of the system contains a contribution due to the interfaces. Studying the chemical potential excess relative to the coexistence curve as a function of the density, for a suitable range of linear dimensions of the simulation box, the interfacial contribution to the thermodynamic potential can be found via thermodynamic integration methods. While for “slab-like” two-phase configurations this method is well-known (and has been tested for various models by comparison with other methods, such as the analysis of the capillary wave induced broadening of interfacial profiles), for curved interfaces of droplets this technique is new. The question whether it can be used to estimate a Tolman length is considered, and an extension to discuss phase coexistence in systems confined by planar walls is given. Then line-tension corrections need to be considered both for slab-like two-phase geometries and for wall-attached (sphere-cap-shaped) droplets. The methods proposed in this paper yield input for the description of both homogeneous and heterogeneous nucleation and growth.

Keywords

Contact Angle European Physical Journal Special Topic Ising Model Surface Free Energy Line Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002)zbMATHGoogle Scholar
  2. 2.
    G. Kostorz (ed.), Phase Transformations in Materials (Wiley-VCH, Weinheim, 2001)Google Scholar
  3. 3.
    S. Puri, V. Wadhawan (eds.), Kinetics of Phase Transitions (CRC Press, Boca Raton, 2009)Google Scholar
  4. 4.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982)Google Scholar
  5. 5.
    A.C. Zettelmoyer (ed.), Nucleation (M. Dekker, New York, 1969)Google Scholar
  6. 6.
    F.F. Abraham, Homogeneous Nucleation Theory (Academic, New York, 1974)Google Scholar
  7. 7.
    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)Google Scholar
  8. 8.
    H. Biloni, in Physical Metallurgy, edited by R.W. Cahn, P. Haasen (Amsterdam, North-Holland, 1983), p. 477Google Scholar
  9. 9.
    P.G. de Gennes, Rev. Mod. Phys. 58, 827 (1985)CrossRefGoogle Scholar
  10. 10.
    D.E. Sullivan, M.M. Telo da Gama, in Fluid Interfacial Phenomena, edited by C.A. Croxton (Wiley, New York, 1986), p. 45Google Scholar
  11. 11.
    S. Dietrich, in Phase Transitions and Critical Phenomena, Vol XII, edited by C. Domb, J.L. Lebowitz (Academic, New York, 1988), p. 1Google Scholar
  12. 12.
    M. Schick, in Liquids at Interfaces, edited by J. Charvolin, J.F. Joanny, and J. Zinn-Justin, etc. (North-Holland, Amsterdam, 1990), p. 415Google Scholar
  13. 13.
    D. Bonn, D. Ross, Rep. Progr. Phys. 64, 1085 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    K. Binder, D.P. Landau, M. Müller, J. Stat. Phys. 110, 1411 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    F.P. Buff, R.A. Lovett, F.H. Stillinger, Phys. Rev. Lett. 15, 621 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    J.D. Weeks, J. Chem. Phys. 67, 3106 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    D. Bedeaux, J.D. Weeks, J. Chem. Phys. 82, 972 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    K. Binder, M. Müller, Int. J. Mod. Phys. C11, 1093 (2000); M.H. Köpf, G. Münster, J. Stat. Phys. 132, 417 (2008)ADSGoogle Scholar
  19. 19.
    R.C. Tolman, J. Chem. Phys. 17, 333 (1949)ADSCrossRefGoogle Scholar
  20. 20.
    M.P.A. Fisher, M. Wortis, Phys. Rev. B 29, 6252 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    J.S. Rowlinson, J. Phys.: Condens. Matter 6, A1 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    M.J. Haye, C. Bruin, J. Chem. Phys. 100, 556 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Kalikmanov, Phys. Rev. E 55, 3068 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    L. Gránásy, J. Chem. Phys. 109, 9660 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    A.E. van Giessen, E.M. Blokhuis, D.J. Bukman, J. Chem. Phys. 108, 1148 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    E. M. Blokhuis, J. Kuipers, J. Chem. Phys. 124, 074701 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    M.A. Anisimov, Phys. Rev. Lett. 98, 035702 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 31, 688 (1959)ADSCrossRefGoogle Scholar
  29. 29.
    D.W. Oxtoby, R. Evans, J. Chem. Phys. 89, 7521 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    X.C. Zeng, D.W. Oxtoby, J. Chem. Phys. 94, 4472 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 99, 2865 (1995)CrossRefGoogle Scholar
  32. 32.
    R.M. Nyquist, V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 103, 1175 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    L. Gránásy, D.W. Oxtoby, J. Chem. Phys. 112, 2399 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    L. Gránásy, Z. Jurek, D.W. Oxtoby, Phys. Rev. E 62, 7486 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    L. Gránásy, J. Non-Cryst. Solids 162, 301 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    L. Gránásy, J. Chem. Phys. 104, 5188 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    L. Gránásy, J. Phys. Chem. 100, 10768 (1996)CrossRefGoogle Scholar
  38. 38.
    L. Boruvka, A.W. Neumann, J. Chem. Phys. 66, 5464 (1977)ADSCrossRefGoogle Scholar
  39. 39.
    J.O. Indekeu, Int. J. Mod. Phys. B 8, 309 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    B. Widom, J. Phys. Chem. 99, 2803 (1995)CrossRefGoogle Scholar
  41. 41.
    D. Li, D.J. Steigmann, Collids Surf. A 116, 25 (1996)CrossRefGoogle Scholar
  42. 42.
    T. Bieker, S. Dietrich, Physica A 252, 85 (1998)CrossRefGoogle Scholar
  43. 43.
    T. Getta, S. Dietrich, Phys. Rev. E 57, 655 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    M. Brinkmann, J. Kierfeld, R. Lipowsky, J. Phys.: Condens. Matter 17, 2349 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Djikaev, J. Chem. Phys. 123, 184704 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    L. Schimmele, M. Napiorkowski, S. Dietrich, J. Chem. Phys. 127, 164715 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    R.D. Gretz, J. Chem. Phys. 45, 3160 (1966)ADSCrossRefGoogle Scholar
  48. 48.
    G. Navascues, P. Taranzona, J. Chem. Phys. 75, 2441 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    D. Winter, P. Virnau, K. Binder, J. Phys.: Condens. Matter 21 (2009)Google Scholar
  50. 50.
    J.P.R.B. Walton, D.J. Tildesley, J.S. Rowlinson, Mol. Phys. 48, 1357 (1983)ADSCrossRefGoogle Scholar
  51. 51.
    M.J.P. Nijmeijer, A.F. Bakker, C. Bruin, J.H. Sikkenk, J. Chem. Phys. 89, 3789 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    M. Baus, R. Lovett, Phys. Rev. Lett. 65, 1781 (1990); 67, 407 (1991)ADSCrossRefGoogle Scholar
  53. 53.
    J.S. Rowlinson, Phys. Rev. Lett. 67, 407 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    E.M. Blokhuis, D. Bedeaux, J. Chem. Phys. 97, 3576 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    K. Binder, Phys. Rev. A 25, 1699 (1982)ADSCrossRefGoogle Scholar
  56. 56.
    B.A. Berg, U. Hansmann, T. Neuhaus, Z. Phys. B 90, 229 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    J.E. Hunter, W.P. Reinhardt, J. Chem. Phys. 103, 8627 (1995); J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 112, 6411 (2000); J.R. Errington, Phys. Rev. E 67, 012102 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    K. Binder, M. Müller, W. Oed, J. Chem. Soc. Faraday Trans. 91, 2369 (1995)CrossRefGoogle Scholar
  59. 59.
    M. Müller, M. Schick, J. Chem. Phys. 105, 8885 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    M. Müller, L.G. MacDowell, Macromolecules 33, 3902 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    P. Virnau, M. Müller, L.G. MacDowell, K. Binder, J. Chem. Phys. 121, 2169 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    R.L.C. Vink, J. Horbach, K. Binder, Phys. Rev. E 71, 011401 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    B.M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, L.G. MacDowell, J. Chem. Phys. 128, 104501 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    B.M. Mognetti, P. Virnau, L. Yelash, W. Paul, K. Binder, M. Müller, L.G. MacDowell, J. Chem. Phys. 130, 044101 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    M. Chapra, M. Müller, J.J. de Pablo, J. Chem. Phys. 124, 134102 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    T. Zykova-Timan, R.E. Rozas, J. Horbach, K. Binder, J. Phys.: Condens. Matter 21 (2009)Google Scholar
  67. 67.
    K.K. Mon, D.P. Landau, D. Stauffer, Phys. Rev. B 42, 545 (1990)ADSCrossRefGoogle Scholar
  68. 68.
    F. Schmid, K. Binder, Phys. Rev. B 46, 13553 (1992)ADSCrossRefGoogle Scholar
  69. 69.
    M. Hasenbusch, K. Pinn, Physica A 192, 342 (1993)ADSCrossRefGoogle Scholar
  70. 70.
    M. Müller, G. Münster, J. Stat. Phys. 118, 669 (2005)zbMATHADSCrossRefGoogle Scholar
  71. 71.
    A. Werner, F. Schmid, M. Müller, K. Binder, J. Chem. Phys. 107, 8175 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    A. Werner, F. Schmid, M. Müller, K. Binder, Phys. Rev. E 59, 728 (1999)ADSCrossRefGoogle Scholar
  73. 73.
    R.L.C. Vink, J. Horbach, J. Phys.: Condens. Matter 16, S3807 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    R.L.C. Vink, J. Horbach, K. Binder, J. Chem. Phys. 122, 134905 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    V. Privman, Phys. Rev. Lett. 61, 183 (1988)MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    A. Milchev, K. Binder, J. Chem. Phys. 115, 983 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    J.J. Hoyt, M. Asta, A. Karma, Phys. Rev. Lett. 86, 5530 (2001)ADSCrossRefGoogle Scholar
  78. 78.
    M. Asta, J.J. Hoyt, A. Karma, Phys. Rev. B 66, 100101 (2002)ADSCrossRefGoogle Scholar
  79. 79.
    D. Buta, M. Asta, J.J. Hoyt, Phys. Rev. E 78, 031605 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    M. Schrader, P. Virnau, K. Binder, Phys. Rev. E (2009)Google Scholar
  81. 81.
    K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction, 4th Ed. (Springer, Berlin, 2002)zbMATHGoogle Scholar
  82. 82.
    D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithms to Applications, 2nd Ed. (Academic Press, San Diego, 2002)Google Scholar
  83. 83.
    D.P. Landau, K. Binder: A Guide to Monte Carlo Simulation in Statistical Physics, 3rd Ed. (Cambridge Univ. Press, Cambridge, 2009)Google Scholar
  84. 84.
    N.B. Wilding, in Annual Reviews of Computational Physics IV, edited by D. Stauffer (World Scientific, Singapore, 1996), p. 37; N.B. Wilding, Phys. Rev. E 52, 602 (1995)Google Scholar
  85. 85.
    P. Virnau, M. Müller, J. Chem. Phys. 120, 10925 (2004)ADSCrossRefGoogle Scholar
  86. 86.
    A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 44, 5081 (1991)ADSCrossRefGoogle Scholar
  87. 87.
    S.K. Das, J. Horbach, K. Binder, M.E. Fisher, J.V. Sengers, J. Chem. Phys. 125, 024506 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    K. Binder, M.H. Kalos, J. Stat. Phys. 22, 363 (1980)ADSCrossRefGoogle Scholar
  89. 89.
    H. Furukawa, K. Binder, Phys. Rev. A 26, 556 (1982)ADSCrossRefGoogle Scholar
  90. 90.
    M. Biskup, L. Chayes, R. Kotecky, Europhys. Lett. 60, 21 (2002)ADSCrossRefGoogle Scholar
  91. 91.
    K. Binder, Physica A319, 99 (2003)MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    E.A. Carlen, M.C. Carvalho, R. Esposito, J.L. Lebowitz, R. Marra, Molec. Phys. 103, 3141 (2005)ADSCrossRefGoogle Scholar
  93. 93.
    L.G. MacDowell, V.K. Shen, J.R. Errington, J. Chem. Phys. 125, 034705 (2006)ADSCrossRefGoogle Scholar
  94. 94.
    A. Nussbaumer, E. Bittner, T. Neuhaus, W. Janke, Europhys. Lett. 75, 716 (2006)ADSCrossRefGoogle Scholar
  95. 95.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1958)zbMATHGoogle Scholar
  96. 96.
    F.H. Stillinger, J. Chem. Phys. 38, 1486 (1963)ADSCrossRefGoogle Scholar
  97. 97.
    D. Winter, Diplomarbeit (Johannes Gutenberg Universität Mainz, 2009) (unpublished)Google Scholar
  98. 98.
    K. Binder, D. Stauffer, Adv. Phys. 25, 343 (1976)ADSCrossRefGoogle Scholar
  99. 99.
    H. Müller-Krumbhaar, Phys. Lett. 48 A, 459 (1974); 50 A, 27 (1974)ADSGoogle Scholar
  100. 100.
    R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)ADSCrossRefGoogle Scholar
  101. 101.
    C. Rottmann, M. Wortis, Phys. Rep. 103, 59 (1984)MathSciNetADSCrossRefGoogle Scholar
  102. 102.
    H. van Beijeren, I. Nolden, in Structure and Dynamics of Surfaces II, edited by W. Schommers, P. Blanckenhagen (Springer, Berlin, 1987), p. 259Google Scholar
  103. 103.
    K.K. Mon, D.P. Landau, K. Binder, W. Wansleben, Phys. Rev. B 39, 7089 (1989)ADSCrossRefGoogle Scholar
  104. 104.
    K. Binder, Phys. Rev. A 29, 341 (1984)ADSCrossRefGoogle Scholar
  105. 105.
    D. Turnbull, J. Chem. Phys. 18, 198 (1950); J. Appl. Phys. 21, 1022 (1950)ADSCrossRefGoogle Scholar
  106. 106.
    K. Binder, D.P. Landau, Phys. Rev. B 97, 1745 (1998); K. Binder, D.P. Landau, S. Wansleben, Phys. Rev. B 40, 6971 (1989)Google Scholar
  107. 107.
    D. Jasnow, Rep. Progr. Phys. 47, 1059 (1984)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • M. Schrader
    • 1
  • P. Virnau
    • 1
  • D. Winter
    • 1
  • T. Zykova-Timan
    • 1
  • K. Binder
    • 1
    Email author
  1. 1.Institute of Physics, Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations