Quantum mechanical and molecular mechanical simulation approaches bridging length and time scales for simulation of interface reactions in realistic environments

  • J. M. KnaupEmail author
  • P. Tölle
  • Ch. Köhler
  • Th. Frauenheim


Computer-assisted design of functional materials requires methods that are able to simultaneously describe these with the necessary accuracy at the relevant time and length scales. One such possibility is the combination of classical interatomic force fields with density-functional based tight-binding (DFTB), an efficient and accurate quantum method. We employ this combination to study porous silicon dioxide functionalized with imidazole, which is used as an additive to polymer electrolyte membranes (PEM) for fuel cells applications. We analyze the water density and the dynamics of the functional groups at different temperatures by molecular dynamics simulation, whereas we calculate DFTB free energy barriers for proton transport reactions within the functionalized surface at different water contents. Combining both results, a macroscopic picture of the proton diffusion is drawn. Furthermore, we simulate the adsorption reactions of different components of an epoxide adhesive system on gamma alumina, using a direct coupling of DFTB and classical modeling. This yields direct chemical insight, how water and excess protons at the interface weaken the adhesion between epoxy polymers and natively oxidized aluminium.


European Physical Journal Special Topic Reaction Energy Proton Transport Polymer Electrolyte Membrane Adsorption Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)CrossRefGoogle Scholar
  2. 2.
    J. Gao, D.G. Truhlar, Annu. Rev. Phys. Chem. 53, 467 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2002)CrossRefGoogle Scholar
  4. 4.
    Q. Cui, M. Karplus, Adv. Prot. Chem. 66, 315 (2003)CrossRefGoogle Scholar
  5. 5.
    C. Lennartz, A. Schaefer, F. Terstegen, W. Thiel, J. Phys. Chem. B 106, 1758 (2002)CrossRefGoogle Scholar
  6. 6.
    V. Guallar, R.A. Friesner, J. Am. Chem. Soc. 126, 8501 (2004)CrossRefGoogle Scholar
  7. 7.
    G.A. Cisneros, H.Y. Liu, Y.K. Zhang, W.T. Yang, J. Am. Chem. Soc. 125, 10384 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Woo, P. Margl, L. Deng, L. Cavallo, T. Ziegler, Catalysis Today 50, 479 (1999)CrossRefGoogle Scholar
  9. 9.
    A. Maiti, M. Sierka, J. Andzelm, J. Golab, J. Sauer, J. Phys. Chem. A 104, 10932 (2000)CrossRefGoogle Scholar
  10. 10.
    C. Choi, M. Gordon, J. Am. Chem. Soc. 121, 11311 (1999)CrossRefGoogle Scholar
  11. 11.
    P. Sinclair, A. de Vries, P. Sherwood, C. Catlow, R. van Santen, J. Chem. Soc., Faraday Trans. 94, 3401 (1998)CrossRefGoogle Scholar
  12. 12.
    P. König, M. Hoffmann, T. Frauenheim, Q. Cui, J. Phys. Chem. B 109, 9082 (2005)CrossRefGoogle Scholar
  13. 13.
    D. Riccardi, P. Schaefer, Y. Yang, H. Yu, N. Ghosh, X. Prat-Resina, P. König, G. Li, D. Xu, H. Guo, et al., J. Phys. Chem. B 110, 6458 (2006)CrossRefGoogle Scholar
  14. 14.
    P. Sherwood, A.H. de Vries, M.F. Guest, G. Schreckenbach, C.R.A. Catlow, S.A. French, A.A. Sokol, S.T. Bromley, W. Thiel, A.J. Turner, et al., THEOCHEM 632, 1 (2003)CrossRefGoogle Scholar
  15. 15.
    I. Hillier, J. Mol. Struct. (Theochem) 463, 45 (1999)CrossRefGoogle Scholar
  16. 16.
    J. Sauer, M. Sierka, J. Comput. Chem. 21, 1470 (2000)CrossRefGoogle Scholar
  17. 17.
    J. Noell, K. Morokuma, J. Phys. Chem. 80, 2675 (1976)CrossRefGoogle Scholar
  18. 18.
    N. Lopez, G. Pacchioni, F. Maseras, F. Illas, Chem. Phys. 294, 611 (1998)ADSGoogle Scholar
  19. 19.
    M.J. Field, P.A. Bash, M. Karplus, J. Comput. Chem. 11, 700 (1990)CrossRefGoogle Scholar
  20. 20.
    M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 100, 19357 (1996)CrossRefGoogle Scholar
  21. 21.
    B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007)CrossRefGoogle Scholar
  22. 22.
    D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)CrossRefADSGoogle Scholar
  23. 23.
    T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, S. Suhai, R. Scholz, Phys. Stat. Sol. (b) 217, 41 (2000)CrossRefADSGoogle Scholar
  24. 24.
    P. Politzer, R.S. Mulliken, J. Chem. Phys. 55, 5135 (1971), CrossRefADSGoogle Scholar
  25. 25.
    R.F.W. Bader, T. Nguyen-Dang, T.Y. Rep. Prog. Phys. 44, 893 (1981)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
  27. 27.
    W. Hoover, et al., Physical Review A 31(3), 1695 (1985)CrossRefADSGoogle Scholar
  28. 28.
    Nose, Mol. E. Phys. 52, 255 (1984)CrossRefADSGoogle Scholar
  29. 29.
    H. Berendsen, J. Postma, W. Van Gunsteren, A. DiNola, J. Haak, J. Chem. Phys. 81, 3684 (1984)CrossRefADSGoogle Scholar
  30. 30.
    E. Lindahl, B. Hess, D. van der Spoel, J. Molec. Model. 7, 306 (2001)Google Scholar
  31. 31.
    B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, M. Karplus, J. Comput. Chem. 4, 187 (1983)CrossRefGoogle Scholar
  32. 32.
    W. Jorgensen, D. Maxwell, J. Tirado-Rives, Q. ReV. Biophys. 26, 49 (1993)CrossRefGoogle Scholar
  33. 33.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefGoogle Scholar
  34. 34.
    C. Bartels, R. Stote, M. Karplus, J. Molec. Biol. 284, 1641 (1998)CrossRefGoogle Scholar
  35. 35.
    J. Kottalam, D. Case, J. Am. Chem. Soc. 110, 7690 (1988)CrossRefGoogle Scholar
  36. 36.
    S. Kumar, J. Rosenberg, D. Bouzida, R. Swendsen, P. Kollman, J. Comput. Chem. 16, 1339 (1995)CrossRefGoogle Scholar
  37. 37.
    S. Kumar, J. Rosenberg, D. Bouzida, R. Swendsen, P. Kollman, J. Comput. Chem. 13, 1011 (1992)CrossRefGoogle Scholar
  38. 38.
    P. König, N. Ghosh, M. Hoffmann, M. Elstner, E. Tajkhorshid, T. Frauenheim, Q. Cui, J. Phys. Chem. A 110, 548 (2006)CrossRefGoogle Scholar
  39. 39.
    P. Tölle, W. Cavalcanti, M. Hoffmann, C. Kohler, T. Frauenheim, Fuel Cells 8 (2008)Google Scholar
  40. 40.
    H. Jónsson, G. Mills, K.W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapur, 1998), chap. Nudged elastic band method for finding minimum energy paths of transitions, pp. 387–405Google Scholar
  41. 41.
    A.J. Du, S.C. Smith, X.D. Yao, G.Q. Lu, J. Phys. Chem. B 109, 18037 (2005)CrossRefGoogle Scholar
  42. 42.
    C. Sbraccia, C.A. Pignedoli, A. Catellani, R. Di Felice, P.L. Silverstrelli, F. Toigo, F. Ancilotto, C.M. Bertoni, Comput. Phys. Commun. 169, 32 (2005)CrossRefADSGoogle Scholar
  43. 43.
    T. Bakos, M. Valipa, E.S. Aydil, D. Maoudas, Chem. Phys. Lett. 414, 61 (2005)CrossRefADSGoogle Scholar
  44. 44.
    P. Maragakis, S.A. Adreev, Y. Brumer, D.R. Reichmann, E. Kaxiras, J. Chem. Phys. 117, 4651 (2002)CrossRefADSGoogle Scholar
  45. 45.
    G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)CrossRefADSGoogle Scholar
  46. 46.
    G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)CrossRefADSGoogle Scholar
  47. 47.
    J.M. Knaup, C. Köhler, T. Frauenheim, A.T. Blumenau, M. Amkreutz, P. Schiffels, B. Schneider, O.D. Hennemann, J. Phys. Chem. B 110, 20460 (2006)CrossRefGoogle Scholar
  48. 48.
    S. Paddison, K. Kreuer, J. Maier, Phys. Chem. Chem. Phys. 8, 4530 (2006)CrossRefGoogle Scholar
  49. 49.
    K. Kreuer, S. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004)CrossRefGoogle Scholar
  50. 50.
    S. Paddison, Ann. Rev. Mater. Res. 33, 289 (2003)CrossRefGoogle Scholar
  51. 51.
    W.H.M.F.H. Schuster, Ann. Rev. Mater. Res. 33, 233 (2003)CrossRefGoogle Scholar
  52. 52.
    S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki, M. Mikami, J. Phys. Chem. B 109, 4269 (2005)CrossRefGoogle Scholar
  53. 53.
    E. Spohr, P. Commer, A. Kornyshev, J. Phys. Chem. B-Condensed Phase 106, 10560 (2002)Google Scholar
  54. 54.
    S. Scheiner, M. Yi, J. Phys. Chem. 100, 9235 (1996)CrossRefGoogle Scholar
  55. 55.
    W. Münch, K. Kreuer, W. Silvestri, J. Maier, G. Seifert, Solid State Ionics 145, 437 (2001)CrossRefGoogle Scholar
  56. 56.
    A. Kawada, A. McGhie, M. Labes, J. Chem. Phys. 52, 3121 (1970)CrossRefADSGoogle Scholar
  57. 57.
    M. Iannuzzi, J. Chem. Phys. 124, 204710 (2006)CrossRefADSGoogle Scholar
  58. 58.
    R. Marschall, J. Rathousky, M. Wark, ChemInform 39 (2008)Google Scholar
  59. 59.
    M. Wilhelm, M. Jeske, R. Marschall, W. Cavalcanti, P. Tölle, C. Köhler, D. Koch, T. Frauenheim, G. Grathwohl, J. Caro, et al., J. Membr. Sci. 316, 164 (2008)CrossRefGoogle Scholar
  60. 60.
    W. Cavalcanti, R. Marschall, P. Tölle, C. Köhler, M. Wark, T. Frauenheim, Fuel Cells 8 (2008)Google Scholar
  61. 61.
    R. Marschall, P. Tölle, C. Köhler, W. Cavalcanti, M. Wilhelm, T. Frauenheim, M. Wark, J. Phys. Chem. B (2009)Google Scholar
  62. 62.
    P. Lopes, V. Murashov, M. Tazi, E. Demchuk, A. MacKerell Jr., J. Phys. Chem. B 110, 2782 (2006)CrossRefGoogle Scholar
  63. 63.
    W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, M. Klein, J. Chem. Phys. 79, 926 (1983)CrossRefADSGoogle Scholar
  64. 64.
    J. Theobald, N. Oxtoby, M. Phillips, N. Champness, P. Beton, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  65. 65.
    M. Hodges, D. Wales, Chem. Phys. Lett. 324, 279 (2000)CrossRefADSGoogle Scholar
  66. 66.
    S. Maheshwary, N. Patel, N. Sathyamurthy, A. Kulkarni, S. Gadre, J. Phys. Chem. A 105, 10525 (2001)CrossRefGoogle Scholar
  67. 67.
    A. Becke, J. Chem. Phys. 98, 1372 (1993)CrossRefADSGoogle Scholar
  68. 68.
    C. Møller, M. Plesset, Phys. Rev. 46, 618 (1934)zbMATHCrossRefADSGoogle Scholar
  69. 69.
    H. Hu, Z. Lu, M. Elstner, J. Hermans, W. Yang, J. Phys. Chem. A 111, 5685 (2007)CrossRefGoogle Scholar
  70. 70.
    K. Wefers, C. Misra, Tech. Rep., Alcoa Laboratories (1987)Google Scholar
  71. 71.
    A.F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie (de Gruyter, Berlin, 1995), chap. Das Aluminium, pp. 1081–1083Google Scholar
  72. 72.
    J.M. Knaup, Ph.D. thesis, Universität Paderborn, Warburger Str. 100, 33098 Paderborn (2008),
  73. 73.
    B. Schneider, P. Schiffels, R. Wilken, Bonding of Amine Curing Agents to Native Aluminum Oxide Surfaces, in Proceedings of the 28th Annual Meeting of the Adhesion Society (2005), p. 431Google Scholar
  74. 74.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996), CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • J. M. Knaup
    • 1
    Email author
  • P. Tölle
    • 1
  • Ch. Köhler
    • 1
  • Th. Frauenheim
    • 1
  1. 1.Bremen Center for Compuational Materials Science – BCCMS, Universität BremenBremenGermany

Personalised recommendations