A thin interface asymptotic for a phase-field model of epitaxial growth with different adatom diffusivities

  • J. KundinEmail author
  • J. Hubert
  • H. Emmerich


Here we extend a phase-field model for epitaxial step-flow growth originally derived by Liu and Metiu to capture the case of different adatom diffusivities at neighboring terraces as well as an arbitrary Ehrlich-Schwoebel (ES) barrier. Our extended model approach bridges the atomic to continuum scale in the sense that it takes into account atomic attachment kinetics in full detail and likewise allows to simulate long range transport processes above the surface efficiently. To verify the model we present a matched asymptotic analysis of the derived model equations, which shows that in a special limit the presented model can be related to the Burton-Cabrera-Frank (BCF) model with different kinds of attachment coefficients at either side of a step edge. We demonstrate the capability of our approach by presenting numerical simulations with an Ehrlich-Schwoebel (ES) barrier, which reproduce the well-known step meandering instability. Thereby we show how mathematical analysis helps to specify and validate a phase-field model and thus contributes to the further development of this modeling approach at the nano- to microscale.


European Physical Journal Special Topic Asymptotic Analysis Epitaxial Growth Step Edge Lower Terrace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Liu, H. Metiu, Phys. Rev. E 49, 2601 (1994)CrossRefADSGoogle Scholar
  2. 2.
    W.K. Burton, N. Cabrera, F.C. Frank, Phil. Trans. R. Soc. A 243, 299 (1951)zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    A. Karma, W.-J. Rappel, Phys. Rev. E 57, 4323 (1998)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    G. Ehrlich, F.G. Hudda, J. Chem. Phys. 44, 1036 (1966)ADSGoogle Scholar
  5. 5.
    R.L. Schwöbel, E.J. Shipsey, J. Appl. Phys. 37, 3682 (1966)CrossRefADSGoogle Scholar
  6. 6.
    G.S. Bales, A. Zangwill, Phys. Rev. B 41, 5500 (1990)CrossRefADSGoogle Scholar
  7. 7.
    A. Karma, M. Plapp, Phys. Rev. Lett. 81, 4342 (1998)CrossRefGoogle Scholar
  8. 8.
    H. Emmerich, Ch. Eck, Cont. Mech. Thermodyn. 17, 373 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Kundin, H. Emmerich, Eur. Phys. J. B 63, 25 (2008)CrossRefADSGoogle Scholar
  10. 10.
    J. Kundin, M. Radke de Cuba, S. Gemming, H. Emmerich, Physica D 238, 117 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    R.F. Almgren, SIAM J. Appl. Math. 59, 2086 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    G.B. McFadden, A.A. Wheeler, D.M. Anderson, Physica D 144, 154 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    H. Emmerich, Cont. Mech. Thermodyn. 15, 197 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Emmerich, The Diffuse Interface Approach in Material Science: Thermodynamic Concepts and Applications of Phase-Field Models, Lecture Notes in Physics monograph, LNPm 73 (2003)Google Scholar
  15. 15.
    F. Otto, P. Penzler, A. Rätz, T. Rump, A. Voigt, Nonlinearity 17, 477 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    R. Almgren, SIAM J. Appl. Math. 59, 2086 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M.E. Glicksman, S.P. Marsh, In Handbook of Crystal Growth, Vol. 1b, edited by D.T.J. Hurle (Elsevier, Amsterdam, 1993), p. 1075Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Computational Materials Engineering (CME), Institute for Minerals Engineering, Center for Computational Engineering Science, Jülich-Aachen Research Alliance, RWTH Aachen UniversityAachenGermany

Personalised recommendations