The European Physical Journal Special Topics

, Volume 177, Issue 1, pp 5–21 | Cite as

Homogenization and two-scale models for liquid phase epitaxy

  • Ch. EckEmail author
  • H. Emmerich


We consider models for liquid phase epitaxy without and with elasticity. The models are based on continuum models for fluid flow and transport of adatoms in the liquid solution and a BCF–model for the growth of the solid phase. Using homogenization by formal asymptotic expansion, we obtain two–scale models that are appropriate to describe the evolution of microstructures in the solid phase for processes of technically relevant macroscopic length scales. The two–scale models consist of macroscopic equations for fluid flow and solute transport in the liquid and microscopic cell problems for the growth and elastic deformation of the solid. For the case without elasticity and a phase field approximation of the BCF–model, an estimate of the model error is presented.


Elastic Deformation European Physical Journal Special Topic Scale Model Epitaxial Layer Liquid Phase Epitaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Asaro, W.A. Tiller, Metall. Trans. 2, 1789 (1972)CrossRefGoogle Scholar
  2. 2.
    E. Bauser, Atomic mechanisms in semiconductor liquid phase epitaxy, edited by D.T.J. Hurle, Handbook of Crystal Growth, Vol. 3 (North-Holland, Amsterdam, 1994)Google Scholar
  3. 3.
    T. Blesgen, U. Weikard, Electr. J. Differ. Eq. 89, 1 (2005)MathSciNetGoogle Scholar
  4. 4.
    E. Bonnetier, A. Chambolle, SIAM J. Appl. Math 62, 1093 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W.K. Burton, N. Cabrera, F.C. Frank, Phil. Trans. Roy. Soc. 243, 299 (1951)zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    G. Caginalp, Arch. Ration. Mech. Anal. 92, 205 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Carrive, A. Miranville, A. Pétrus, Adv. Math. Sci. Appl. 10, 539 (2000)zbMATHMathSciNetGoogle Scholar
  8. 8.
    V. Chalupecki, Ch. Eck, H. Emmerich, A two-scale model for liquid phase epitaxy, Preprint 196, DFG SPP 1095 “Mehrskalenprobleme” (2006)Google Scholar
  9. 9.
    A.A. Chernov, T. Nishinaga, edited by I. Sungawa, Growth shapes and stability in Morphology of Crystals (Terra Scientific Publ. Co., 1987), p. 270Google Scholar
  10. 10.
    W. Dorsch, S. Christiansen, M. Albrecht, P.O. Hansson, E. Bauser, H.P. Strunk, Surf. Sci. 896, 331 (1994)Google Scholar
  11. 11.
    V. Chalupecki, Ch. Eck, H. Emmerich, A two-scale model for liquid phase epitaxy, Preprint 196, DFG SPP 1095 “Mehrskalenprobleme” (2004)Google Scholar
  12. 12.
    Ch. Eck, H. Emmerich, Math. Methods Appl. Sci. 32, 12 (2009)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    H. Emmerich, Ch. Eck, Cont. Mech. Thermodynamics 17, 373 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    H. Emmerich, Cont. Mech. Thermodyn. 15, 197 (2003); Cont. Mech. Thermodyn. 17, 373 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. Fried, M.E. Gurtin, J. Mech. Phys. Solids 51, 487 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    H. Garcke, Ann. Inst. H. Poincaré, AN 22, 165 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    H. Garcke, Proc. R. Soc. Edinb., Sect. A, Math. 133, 307 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    H. Garcke, M. Rumpf, U. Weikard, Interfaces Free Bound. 3, 101 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Ghez, Int. J. Heat Mass Transfer 23, 425 (1980)CrossRefGoogle Scholar
  20. 20.
    M.A. Grinfeld, Doklady Akademii Nauk SSSR 290, 1358 (1986)ADSGoogle Scholar
  21. 21.
    M.E. Gurtin, Physica D 92, 178 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    M.E. Gurtin, M.E. Jabbour, Arch. Ration. Mech. Anal. 163, 171 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    L.D. Khutoryanskii, P.P. Petrov, Sov. Phys. Crystallogr. 23, 571 (1978)Google Scholar
  24. 24.
    F.P.J. Kuijpers, G.F.M. Beenker, J. Cryst. Growth 48, 411 (1979)CrossRefADSGoogle Scholar
  25. 25.
    M.B. Small, E. Ghez, E. Giess, Liquid Phase Epitaxy, edited by D.T.J. Hurle, Handbook of Crystal Growth, Vol. 3 (North-Holland, Amsterdam, 1994)Google Scholar
  26. 26.
    V.V Jikov, S.M. Kozlov, O.A Oleinik, Homogenization of Differential Operators and Integral Functionals, (Springer, Berlin — Heidelberg, 1994)Google Scholar
  27. 27.
    W. Lu, Z. Suo, J. Mech. Phys. Solids 49, 1937 (2001)zbMATHCrossRefADSGoogle Scholar
  28. 28.
    H. Müller-Krumbhaar, J. Chem. Phys. 63, 5131 (1975)CrossRefADSGoogle Scholar
  29. 29.
    W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35, 444 (1964)CrossRefADSGoogle Scholar
  30. 30.
    E.M. Sparrow, J.L. Gregg, Trans. ASME J. Heat Transfer 82C, 294 (1960)Google Scholar
  31. 31.
    B.J. Spencer, J. Tersoff, Equilibrium shapes of islands in epitaxially strained solid films, edited by K. Golden et al., Mathematics of Multiscale Materials, Proceedings of the IMA Workshops, Minneapolis, 1995–1996, IMA Vol. Math. Appl. 99 (Springer, New York, 1998), p. 255Google Scholar
  32. 32.
    N. Tokuda, J. Cryst. Growth 67, 358 (1984)CrossRefADSGoogle Scholar
  33. 33.
    W.R. Wilcox, J. Cryst. Growth 12, 93 (1972)CrossRefADSGoogle Scholar
  34. 34.
    L.O. Wilson, N.L. Schryer, J. Fluid Mech. 85, 479 (1978)zbMATHCrossRefADSGoogle Scholar
  35. 35.
    Y. Xiang, SIAM J. Appl. Math. 63, 241 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.IANS, University of StuttgartStuttgartGermany
  2. 2.CME/GHI, RWTH Aachen UniversityAachenGermany

Personalised recommendations