Advertisement

The European Physical Journal Special Topics

, Volume 175, Issue 1, pp 25–33 | Cite as

Relativistic laser plasmas for novel radiation sources

  • A. PukhovEmail author
  • T. Baeva
  • D. an der Brügge
Article

Abstract

Relativistic laser-plasma interaction results in new sources of short-pulsed x-ray radiation. Here we consider two options. The first one is betatron radiation of electrons accelerated in underdense plasmas and oscillating in transverse fields of the laser wake. This radiation is incoherent and broadband, the pulse duration is comparable with that of the driving laser. The second option is the high harmonic generation (HHG) from overdense plasma surfaces. This radiation is coherent. The relativistic high harmonics are phase locked and emerge in the form of (sub-)attosecond pulses. One- and three-dimensional regimes of relativistic HHG from overdense plasmas are considered.

Keywords

European Physical Journal Special Topic Plasma Surface High Harmonic Generation Attosecond Pulse Betatron Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Kim, in Physics of Particle Accelerators, edited by M. Month and M. Dienes, AIP Conf. Proc. 184, I (AIP, New York, 1989), p. 565Google Scholar
  2. W.P. Leemans, et al., IEEE J. Quantum El. 33, 1925 (1997)Google Scholar
  3. C.B. Schroeder, E. Esarey, W.P. Leemans, Phys. Rev. Lett. 93, 194801 (2004)Google Scholar
  4. E. Esarey, S.K. Ride, P. Sprangle, Phys. Rev. E 48, 3003 (1993)Google Scholar
  5. I.V. Pogorelsky, Nucl. Instr. Meth. A 411, 172 (1998)Google Scholar
  6. xfel.desy.de/; www-xfel.spring8.or.jp/; http://www-ssrl.slac.stanford.edu/lcls/Google Scholar
  7. F. Grüner, et al., Appl. Phys. B-Lasers Opt. 86, 431 (2007)Google Scholar
  8. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnik, Nature 431, 535 (2004)Google Scholar
  9. C.G.R. Gedder, Cs. Toth, J. Van Tilborg, E. Esarey, C.B. Scroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)Google Scholar
  10. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, V. Malka, Nature 431, 541 (2004)Google Scholar
  11. E. Esarey, B.A. Shadwick, P. Catravas, W.P. Leemans, Phys. Rev. E 65, 056505 (2002)Google Scholar
  12. A. Pukhov, J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002)Google Scholar
  13. S. Gordienko, A. Pukhov, Phys. Plasmas 12, 043109 (2005)Google Scholar
  14. S. Kiselev, A. Pukhov, I. Kostyukov, Phys. Rev. Lett. 93, 135004 (2004)Google Scholar
  15. A. Rousse, et al., Phys. Rev. Lett. 93, 135005 (2004)Google Scholar
  16. Thaury, et al., Nat. Phys. 3, 424 (2007)Google Scholar
  17. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)Google Scholar
  18. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 065401 (2006)Google Scholar
  19. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)Google Scholar
  20. A. Pukhov, J. Plasma Phys. 61, 425 (1999)Google Scholar
  21. K.T. Phuoc, R. Fitour, A. Tafzi, T. Garl, N. Artemiev, R. Shah, F. Albert, D. Boschetto, A. Rousse, D.E. Kim, A. Pukhov, V. Seredov, I. Kostyukov, Phys. Plasmas 14, 080701 (2007)Google Scholar
  22. K. Ta Phuoc, S. Corde, R. Shah, F. Albert, R. Fitour, J.-P. Rousseau, F. Burgy, B. Mercier, A. Rousse, Phys. Rev. Lett. 97, 225002 (2006)Google Scholar
  23. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 93, 115002 (2004); S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Phys. Rev. Lett. 94, 103903 (2005)Google Scholar
  24. G.D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, New J. Phys. 8, 19 (2006)Google Scholar
  25. I. Watts, et al., Phys. Rev. Lett. 88, 155001 (2002)Google Scholar
  26. I. Watts, et al., Phys. Rev. E 66, 036409 (2002)Google Scholar
  27. U. Wagner, et al., Phys. Rev. E 70, 026401 (2004)Google Scholar
  28. B. Dromey, et al., Nat. Phys. 2, 456 (2006)Google Scholar
  29. B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, R.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, P.A. Norreys, M. Zepf, Phys. Rev. Lett. 99, 085001 (2007)Google Scholar
  30. R.L. Carman, et al., Phys. Rev. Lett. 46, 29 (1981)Google Scholar
  31. B. Bezzerides, et al., Phys. Rev. Lett. 49, 202 (1982)Google Scholar
  32. S.V. Bulanov, et al., Phys. Plasmas 1, 745 (1993)Google Scholar
  33. P. Gibbon, Phys. Rev. Lett. 76, 50 (1996)Google Scholar
  34. R. Lichters, et al., Phys. Plasmas 3, 3425 (1996)Google Scholar
  35. R. Ondarza, Phys. Rev. E 67, 066401 (2003)Google Scholar
  36. K. Eidmann, et al., Phys. Rev. E 72, 036413 (2005)Google Scholar
  37. A. Pukhov, Nat. Phys. 2, 439 (2006)Google Scholar
  38. N.M. Naumova, J.A. Nees, I.V. Sokolov, B. Hou, G.A. Mourou, Phys. Rev. Lett. 92, 063902 (2004)Google Scholar
  39. D. an der Brügge, A. Pukhov, Phys. Plasmas 12, 043109 (2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Institut für Theoretische Physik I, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations