Advertisement

Changing seasonality in Europe’s air temperature

Article

Abstract

Climate change is expected to involve not only changes in the mean of climate parameters, but also in the characteristics of the corresponding seasonal cycle. However, the discrimination from an observational record of long-term changes in the mean and low-frequency variations in the seasonal pattern is a challenging task, requiring the application of specific statistical methods. In this work, a time series decomposition method based on autoregression is applied in order to obtain a flexible description of seasonal variability from European temperature records. The method is based on the dynamic linear model representation for an autoregressive process and is particularly useful for isolating time-varying cycles in climate time series, allowing to retrieve fluctuations in the amplitude and phase of the periodic components and to assess their statistical significance. This approach is utilised in the analysis of long time series of daily mean temperature from the ECA (European Climate Assessment) project. Seasonality in Europe’s air temperature is characterised by an annual cycle with a stable phase but considerable inter-annual and inter-decadal variability. In particular, the annual amplitude was highest in the 1940’s and exhibits a distinct minimum around 1975, coincident with the climatic regime shift of the mid-1970’s.

Keywords

Annual Cycle Seasonal Cycle European Physical Journal Special Topic North Atlantic Oscillation Regime Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Thomson, Science 268, 59 (1995)Google Scholar
  2. S. Pezzulli, D.B. Stephenson, A. Hannachi, J. Climate 18, 71 (2005)Google Scholar
  3. S.M. Barbosa, M.E. Silva, M.J. Fernandes, Tellus A 60, 165 (2008)Google Scholar
  4. Z. Wu, E.K. Schneider, B.P. Kirtman, et al., Clim. Dyn. 31, 823 (2008)Google Scholar
  5. D.J. Thomson, Nature 457, 391 (2009)Google Scholar
  6. R. Thompson, Int. J. Climatol. 15, 175 (1995)Google Scholar
  7. D.J. Thomson, Science 271, 1881 (1996)Google Scholar
  8. T.R. Karl, P.D. Jones, R.W. Knight, Science 271, 1879 (1996)Google Scholar
  9. M.E. Mann, J. Park, Geophys. Res. Lett. 23, 1111 (1996)Google Scholar
  10. O.R. White, W. Mende, J. Beer, Science 271, 1880 (1996)Google Scholar
  11. C.J. Wallace, T.J. Osborn, Climate. Res. 22, 1 (2002)Google Scholar
  12. D. Gu, S.G. Philander, M.J. McPhaden, J. Phys. Oceanography 27, 2209 (1997)Google Scholar
  13. H. Newton, G.R. North, J. Time. Ser. Anal. 12, 255 (1991)Google Scholar
  14. A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge University Press, Cambridge, 1989)Google Scholar
  15. J. Durbin, S.J. Koopman, Time Series Analysis by State Space Models (Oxford University Press, Oxford, 2001)Google Scholar
  16. M. West, P.J. Harrison, Bayesian Forecasting and Dynamic Models (Springer-Verlag, New York, 1997)Google Scholar
  17. M. West, Bayesian Statistics 5, edited by J.M. Berbardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Oxford University Press, Oxford, 1996), p. 461Google Scholar
  18. F. Schwing, R. Mendelssohn, J. Geophys. Res. 102, 3421 (1997)Google Scholar
  19. S. Bograd, F. Schwing, R. Mendelssohn, et al., Geophys. Res. Lett. 29, 47 (2002)Google Scholar
  20. A.M.G.K. Tank, et al., Int. J. Climatol. 22, 1441 (2002)Google Scholar
  21. J.B. Wijngaard, A.M.G.K. Tank, G.P. Können, Int. J. Climatol. 23, 679 (2003)Google Scholar
  22. M. West, Biometrika 84, 489 (1997)Google Scholar
  23. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2009)Google Scholar
  24. J. Hurrell, Science 269, 676 (1995)Google Scholar
  25. J. Marshall, Y. Kushnir, D. Battisti, et al., Int. J. Climatol. 21, 1863 (2001)Google Scholar
  26. R. Trigo, T. Osborn, J. Corte-Real, Climate. Res. 20, 9 (2002)Google Scholar
  27. R.S. Cerveny, B.M. Svoma, R.C. Balling, Jr., et al., Geophys. Res. Lett. 35, L19706 (2008)Google Scholar
  28. T.R. Karl, R.W. Knight, B. Baker, Geophys. Res. Lett. 27, 719 (2000)Google Scholar
  29. P. Miranda, A.R. Tomé, Climatic. Change. 93, 269 (2009)Google Scholar
  30. P.C. Werner, F.-W. Gerstengarbe, K. Fraedrich, et al., Int. J. Climatol. 20, 463 (2000)Google Scholar
  31. N.E. Graham, Clim. Dynam. 10, 60 (1994)Google Scholar
  32. K.E. Trenberth, J.W. Hurrell, Clim. Dynam. 9, 303 (1994)Google Scholar
  33. A.J. Miller, D.R. Cayan, T.P. Barnett, et al., Oceanography 7, 21 (1994)Google Scholar
  34. C. Deser, M.A. Alexander, M.S. Timlin, J. Climate 9, 1840 (1996)Google Scholar
  35. A.J. Miller, W.B. White, J. Climate. 11, 3112 (1998)Google Scholar
  36. B.S. Giese, S.C. Urizar, N.S. Fučkar, Geophys. Res. Lett. 20, 1014 (2002)Google Scholar
  37. L. Wu, D.E. Lee, Z. Liu, J. Climate 18, 5125 (2005)Google Scholar
  38. C. Deser, A.S. Phillips, J. Climate 19, 6170 (2006)Google Scholar
  39. D. Xiao, J. Li, J. Geophys. Res. 112, D24S22 (2007)Google Scholar
  40. A. Miller, N. Schneider, Prog. Oceanog. 27, 257 (2000)Google Scholar
  41. A.A. Tsonis, K. Swanson, S. Kravtsov, Geophys. Res. Lett. 34, L13705 (2007)Google Scholar
  42. K. Fraedrich, Tellus A 46, 541 (1994)Google Scholar
  43. S. Bronnimann, Rev. Geophys. 45, RG3003 (2007)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations