On the use of simple dynamical systems for climate predictions

A Bayesian prediction of the next glacial inception
  • M. Crucifix
  • J. Rougier


Over the last few decades, climate scientists have devoted much effort to the development of large numerical models of the atmosphere and the ocean. While there is no question that such models provide important and useful information on complicated aspects of atmosphere and ocean dynamics, skillful prediction also requires a phenomenological approach, particularly for very slow processes, such as glacial-interglacial cycles. Phenomenological models are often represented as low-order dynamical systems. These are tractable, and a rich source of insights about climate dynamics, but they also ignore large bodies of information on the climate system, and their parameters are generally not operationally defined. Consequently, if they are to be used to predict actual climate system behaviour, then we must take very careful account of the uncertainty introduced by their limitations. In this paper we consider the problem of the timing of the next glacial inception, about which there is on-going debate. Our model is the three-dimensional stochastic system of Saltzman and Maasch (1991), and our inference takes place within a Bayesian framework that allows both for the limitations of the model as a description of the propagation of the climate state vector, and for parametric uncertainty. Our inference takes the form of a data assimilation with unknown static parameters, which we perform with a variant on a Sequential Monte Carlo technique (`particle filter’). Provisional results indicate peak glacial conditions in 60,000 years.


Foraminifera European Physical Journal Special Topic Benthic Foraminifera Singular Spectrum Analysis Stochastic Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Fourier, Théorie analytique de la chaleur (J. Gabay, Paris, 1822), reproduced in fac-simile in 1988Google Scholar
  2. J. Fourier, Mémoire sur les températures du globe terrestre et des espaces planétaires, in œuvres de Fourier, edited by G. Darboux (Gauthier-Villars et fils, 1890), pp. 97–128Google Scholar
  3. K. Lambeck, Y. Yokoyama, P. Johnston, et al., Earth Planet. Sci. Lett. 181, 513 (2000)Google Scholar
  4. W.F. Ruddiman, Clim. Change 61, 261 (2003)Google Scholar
  5. W.F. Ruddiman, Rev. Geophys. 45, RG4001 (2007)Google Scholar
  6. H. Gallée, J.P. van Ypersele, T. Fichefet, et al., J. Geophys. Res. 96, 13139 (1991)Google Scholar
  7. H. Gallée, J.P. van Ypersele, T. Fichefet, et al., J. Geophys. Res. 97, 15713 (1992)Google Scholar
  8. A. Berger, M.F. Loutre, Science 297, 1287 (2002)Google Scholar
  9. M. Crucifix, A. Berger, Eos, Trans. Am. Geophys. Union 87, 352 (2006)Google Scholar
  10. M. Ghil, Nonlin. Proc. Geophys. 8, 211 (2001)Google Scholar
  11. G. Nicolis, C. Nicolis, Foundations of Complex Systems: Nonlinear Dynamics, Statistical Physics, Information and Prediction (World Scientific, 2007)Google Scholar
  12. B. Saltzman, A.R. Hansen, K.A. Maasch, J. Atmos. Sci. 41, 3380 (1984)Google Scholar
  13. B. Saltzman, Dynamical paleoclimatology: Generalized Theory of Global Climate Change (International Geophysics), Vol. 80 of International Geophysics Series (Academic Press, 2001)Google Scholar
  14. A. Penck, E. Brückner, Die Alpen im Eiszeitalter (Tauchnitz, Leipzig, 1909)Google Scholar
  15. A. Berger, Rev. Geophys. 26, 624 (1988)Google Scholar
  16. S. Elias (ed.), Encyclopedia of Quaternary Science, 1st edn. (Elsevier, 2007)Google Scholar
  17. H.C. Urey, Science 108, 489 (1948)Google Scholar
  18. D.L. Buchanan, A. Nakao, G. Edwards, Science 117, 541 (1953)Google Scholar
  19. W. Dansgaard, Tellus 26, 436 (1964)Google Scholar
  20. C. Emiliani, J. Geol. 63, 538 (1955)Google Scholar
  21. J. Jouzel, V. Masson-Delmotte, O. Cattani, et al., Science 317, 793 (2007)Google Scholar
  22. D. Luethi, M. Le Floch, B. Bereiter, et al., Nature 453, 379 (2008)Google Scholar
  23. CLIMAP Project Members, Geol. Soc. Am. 36, (1981)Google Scholar
  24. J.J. Imbrie, J.D. Hays, D.G. Martinson, et al., The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δO18record, in Milankovitch and Climate, Part I, edited by A. Berger, J. Imbrie, J. Hays, et al. (D. Reidel, Norwell, Mass., 1984), pp. 269–305Google Scholar
  25. M.E. Raymo, B. Grant, M. Horowitz, et al., Mar. Micropaleont. 27, 313 (1996)Google Scholar
  26. L.E. Lisiecki, M.E. Raymo, Paleoceanogr. 20, PA1003 (2005)Google Scholar
  27. M.E. Raymo, Paleoceanogr. 12, 577 (1997)Google Scholar
  28. A. Grossman, J. Morlet, SIAM J. Math. Anal. 15, 723 (1984)Google Scholar
  29. C. Torrence, G.P. Compo, Bull. Am. Meteorol. Soc. 79, 61 (1998)Google Scholar
  30. P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983)Google Scholar
  31. C. Nicolis, G. Nicolis, Proc. Natl. Acad. Sci. USA 83, 536 (1986)Google Scholar
  32. K.A. Maasch, Clim. Dyn. 4, 45 (1989)Google Scholar
  33. P. Huybers, C. Wunsch, Paleoceanogr. 19, PA1028 (2004)Google Scholar
  34. W. Constantine, D.B. Percival, Fractal: Insightful Fractal Time Series Modeling and Analysis, Insightful Corporation and Applied Physics Laboratory, University of Washington (2007), R package version 1.0-2Google Scholar
  35. P. Grassberger, Nature 323, 609 (1986)Google Scholar
  36. P. Pestiaux, Approche spectrale en modélisation climatique, Ph.D. thesis, Université Catholique de Louvain (1984)Google Scholar
  37. R. Vautard, M. Ghil, Physica D 35, 395 (1989)Google Scholar
  38. P. Yiou, M. Ghil, J. Jouzel, D. Paillard, et al., Clim. Dyn. 9, 371 (1994)Google Scholar
  39. M. Ghil, M.R. Allen, M.D. Dettinger, et al., Rev. Geophys. 40, 769 (2002)Google Scholar
  40. T. Shun, C.J. Duffy, Water Resour. Res. 35, 191 (1999)Google Scholar
  41. L. Gudmundsson, Simsalabim: A collection of Methods for time Series Analysis and Signal Detection (2008), package version 0.1-3, Scholar
  42. P. Huybers, Quaternary Sci. Rev. 26, 37 (2007)Google Scholar
  43. E. Haam, P. Huybers, J. Geophys. Res. (in review)Google Scholar
  44. J.D. Hays, J. Imbrie, N.J. Shackleton, Science 194, 1121 (1976)Google Scholar
  45. N.J. Shackleton, A. Berger, W.R. Peltier, Trans. Roy. Soc. Edinburgh-Earth Sci. 81, 251 (1990)Google Scholar
  46. B. Saltzman, M. Verbitsky, Nature 367, 419 (1994)Google Scholar
  47. J.M. Barnola, D. Raynaud, Y.S. Korotkevich, C. Lorius, Nature 329, 408 (1987)Google Scholar
  48. J. Jouzel, N. Barkov, J. Barnola, et al., Nature 364, 407 (1993)Google Scholar
  49. K. Kawamura, F. Parrenin, L. Lisiecki, et al., Nature 448, 912 (2007)Google Scholar
  50. W.F. Ruddiman, Quat. Sci. Rev. 22, 1597 (2003)Google Scholar
  51. N.J. Shackleton, Science 289, 1897 (2000)Google Scholar
  52. Y. Yokoyama, K. Lambeck, P. de Deckker, et al., Nature 406, 713 (2000)Google Scholar
  53. J.R. Petit, J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, et al., Nature 399, 429 (1999)Google Scholar
  54. J. Adhémar, Révolutions de la mer : déluges périodiques (Carillan-Goeury et V. Dalmont, Paris, 1842)Google Scholar
  55. J.J. Murphy, Q. J. Geol. Soc. London 32, 400 (1876)Google Scholar
  56. J. Croll, Climate and Time in their Geological Relations: A theory of Secular Changes of the Earth’s Climate (Appleton, New York, 1875)Google Scholar
  57. M. Milankovitch, Canon of Insolation and the Ice-Age Problem (Narodna Biblioteka Srbije, Beograd, 1998), (English translation of the original 1941 publication)Google Scholar
  58. A. Berger, Nature 268, 44 (1977)Google Scholar
  59. A. Berger, Celes. Mech. 15, 53 (1977)Google Scholar
  60. A.L. Berger, J. Atmos. Sci. 35, 2362 (1978)Google Scholar
  61. A.D. Vernekar, Meteor. Monogr. 34 (1972)Google Scholar
  62. W.S. Broecker, J. van Donk, Rev. Geophys. 8, 169 (1970)Google Scholar
  63. J. Weertman, Nature 261, 17 (1976)Google Scholar
  64. D.A. Randall (ed.), General Circulation Model Development: Past, Present and Future, Vol. 70 of International Geophysics Series (Academic Press, San Diego, 2000)Google Scholar
  65. A.J. Broccoli, S. Manabe, Clim. Dyn. 1, 87 (1987)Google Scholar
  66. J.E. Kutzbach, Science 214, 59 (1981)Google Scholar
  67. J.F.B. Mitchell, Phil. Trans. Roy. Lond. B 341, 267 (1993)Google Scholar
  68. M.R. Allen, P.A. Stott, J.F.B. Mitchell, et al., Nature 407, 617 (2000)Google Scholar
  69. J.M. Murphy, D.M.H. Sexton, D.N. Barnett, et al., Nature 430, 768 (2004)Google Scholar
  70. J. Imbrie, E.A. Boyle, S.C. Clemens, et al., Paleoceanogr. 7, 701 (1992)Google Scholar
  71. E. Källén, C. Crafoord, M. Ghil, J. Clim. 36, 2292 (1979)Google Scholar
  72. M. Ghil, H. Le Treut, J. Geophys. Res. 86, 5262 (1981)Google Scholar
  73. H. Le Treut, M. Ghil, J. Geophys. Res. 88, 5167 (1983)Google Scholar
  74. H. Gildor, E. Tziperman, J. Geoph. Res. Oceans 106, 9117 (2001)Google Scholar
  75. I.M. Held, Bull. Am. Meteorol. Soc. 86, 1609 (2005)Google Scholar
  76. J. Imbrie, A. Berger, E.A. Boyle, et al., Paleoceanogr. 8, 699 (1993)Google Scholar
  77. W.F. Ruddiman, Clim. Past 2, 43 (2006)Google Scholar
  78. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)Google Scholar
  79. B. Saltzman, Tellus 34, 97 (1982)Google Scholar
  80. B. Saltzman, K.A. Maasch, Trans. R. Soc. Edinburgh Earth Sci. 81, 315 (1990)Google Scholar
  81. B. Saltzman, K.A. Maasch, Clim. Dyn. 5, 201 (1991)Google Scholar
  82. B. Saltzman, M.Y. Verbitsky, Clim. Dyn. 9, 1 (1993)Google Scholar
  83. H. Haken, Synergetics: An Introduction (Springer, 2004)Google Scholar
  84. J.E. Kutzbach, Quat. Res. 6, 471 (1976), ISSN 0033-5894Google Scholar
  85. N.J. Shackleton, J. Imbrie, Clim. Change 16, 217 (1990)Google Scholar
  86. P. Ditlevsen, H. Svensmark, S. Johnsen, Nature 379, 810 (1996)Google Scholar
  87. J.D. Pelletier, Earth Plan. Sci. Lett. 158, 157 (1998)Google Scholar
  88. P. Huybers, W. Curry, Nature 441, 329 (2006)Google Scholar
  89. B. Saltzman, K.A. Maasch, Glob. Biogeochem. Cycl. 2, 117 (1988)Google Scholar
  90. I. Marsiat, A. Berger, Clim. Dyn. 4, 81 (1992)Google Scholar
  91. G.H. Roe, M.R. Allen, Geoph. Res. Lett. 26, 2259 (1999)Google Scholar
  92. E. Tziperman, M.E. Raymo, P. Huybers, C. Wunsch, Paleoceanography 21, PA4206 (2006)Google Scholar
  93. C.D. Jones, J.M. Gregory, R.B. Thorpe, et al., Clim. Dyn. 25, 189 (2005)Google Scholar
  94. C. Hitchcock, E. Sober, Brit. J. Phil. Sci. 55, 1 (2004)Google Scholar
  95. P. Lipton, Science 307(5707), 219 (2005)Google Scholar
  96. E.T. Jaynes, Where do we stand on maximum entropy, in The maximum entropy formalism, edited by R.D. Levine, M. Tribus (MIT press, 1979), p. 17 Scholar
  97. J. Rougier, Clim. Change 81, 247 (2007)Google Scholar
  98. J.C. Hargreaves, J.D. Annan, Clim. Dyn. 19, 371 (2002)Google Scholar
  99. R.N. Miller, Physica 230, 17 (2007)Google Scholar
  100. K.A. Maasch, B. Saltzman, J. Geoph. Res. Atmospheres 95, 1955 (1990)Google Scholar
  101. K. Hasselmann, Tellus 28, 473 (1976)Google Scholar
  102. J. Liu, M. West, in Sequential Monte Carlo Methods in Practice, edited by A. Doucet, N. de Freitas, N. Gordon (Springer, 2001)Google Scholar
  103. M. Siddall, E. Rohling, A. Almogi-Labin, et al., Nature 423, 853 (2003)Google Scholar
  104. R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2004), 3-900051-07-0, http://www.R-project.orgGoogle Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • M. Crucifix
    • 1
  • J. Rougier
    • 2
  1. 1.Institut d’Astronomie et de Géophysique G. Lemaî tre, Université Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of MathematicsUniversity of BristolBristolUK

Personalised recommendations