The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 237–243 | Cite as

Lattice Boltzmann simulations of capillary filling: Finite vapour density effects

  • F. Diotallevi
  • L. Biferale
  • S. Chibbaro
  • G. Pontrelli
  • F. Toschi
  • S. Succi


Numerical simulations of two-dimensional capillary filling using the pseudo-potential lattice Boltzmann model for multiphase fluids are presented. It is shown that whenever the density of the light-phase exceeds about ten percent of the dense phase, the front motion proceeds through a combined effect of capillary advection and condensation.


European Physical Journal Special Topic Slip Length Static Contact Angle Lattice Boltzmann Front Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E.W. Washburn, Phys. Rev. 17, 273 (1921)Google Scholar
  2. R. Lucas, Kooloid-Z 23, 15 (1918)Google Scholar
  3. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)Google Scholar
  4. E.B. Dussan, Ann. Rev. Fluid Mech. 11, 11 (1979)Google Scholar
  5. L.J. Yang, T.J. Yao, Y.C. Tai, J. Micromech. Microeng. 14, 220 (2004)Google Scholar
  6. N.R. Tas, et al., Appl. Phys. Lett. 85, 3274 (2004)Google Scholar
  7. F. Diotallevi, L. Biferale, S. Chibbaro, A. Lamura, G. Pontrelli, M. Sbragaglia, S. Succi, F. Toschi (2007) [arXiv-0707.0945] EPJ B (accepted)Google Scholar
  8. X. Shan, H. Chen, Phys. Rev. E. 47, 1815 (1993)Google Scholar
  9. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74, 021509 (2006)Google Scholar
  10. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, Phys. Rev. E 75, 026702 (2007)Google Scholar
  11. P. Raiskinmaki, A. Shakib-Manesh, A. Jasberg, A. Koponen, J. Merikoski, J. Timonen, J. Stat. Phys. 107, 143 (2002)Google Scholar
  12. D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer, New York, 2000)Google Scholar
  13. S. Succi, The Lattice Boltzmann Equation (Oxford Science, 2001)Google Scholar
  14. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 1454 (1992)Google Scholar
  15. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, J. Fluid Mech. 548, 257 (2006)Google Scholar
  16. A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)Google Scholar
  17. C.H. Bosanquet, Philos. Mag. 45, 525 (1923)Google Scholar
  18. G. Cavaccini, V. Pianese, A. Jannelli, S. Iacono, R. Fazio, Lecture Series Comp. Comput. Sci. 7, 66 (2006)Google Scholar
  19. J. Szkeley, A.W. Neumann, Y.K. Chuang, J. Coll. Interf. Sci. 69, 486 (1979)Google Scholar
  20. D. Jacqmin, J. Fluid Mech. 402, 57 (2000)Google Scholar
  21. A.J. Briant, J. Yeomans, et al. (in preparation)Google Scholar
  22. S. Succi, R. Benzi, L. Biferale, M. Sbragaglia, F. Toschi, Bull. Polish Acad. Sci. 55, 151 (2007)Google Scholar
  23. Y. Pomeau, Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems (Springer Verlag, 2006), p. 159Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • F. Diotallevi
    • 1
  • L. Biferale
    • 2
  • S. Chibbaro
    • 3
  • G. Pontrelli
    • 1
  • F. Toschi
    • 1
  • S. Succi
    • 1
  1. 1.Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137RomaItaly
  2. 2.Department of Physics and INFNUniversity of Tor VergataRomaItaly
  3. 3.Department of Mechanical EngineeringUniversity of Tor VergataRomeItaly

Personalised recommendations