The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 229–236 | Cite as

Simulation of the piston effect by the lattice Boltzmann method

  • G. HaziEmail author
  • A. Markus


A new lattice Boltzmann model is presented for the simulation of heat transfer in near-critical fluids. Fluid layer between two horizontal plates heated below near the thermodynamic critical point is simulated by the model. The spatial and temporal evolution of the temperature field is analyzed. It is demonstrated that the model can describe accurately the piston effect induced heat transfer at the piston effect timescale.


Heat Transfer European Physical Journal Special Topic Thermal Boundary Layer Lattice Boltzmann Method Heat Transfer Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. F. Zhong, H. Meyer, Phys. Rev. E 51, 3223 (1993)Google Scholar
  2. B. Zappoli, Phys. Fluids 4, 1040 (1992)Google Scholar
  3. B. Zappoli, D. Bailly, Y. Garrabos, B. Le Neindre, P. Guenoun, D. Beysens, Phys. Rev. A 41, 2264 (1990)Google Scholar
  4. J. Straub, L. Eicher, A. Haupt, Phys. Rev. E, 51, 5556 (1995)Google Scholar
  5. A. Onuki, H. Hao, R.A. Ferrell, Phys. Rev. A, 41, 2256 (1990)Google Scholar
  6. I.L. Pioro, R.B. Duffey, Nucl. Eng. Des. 235, 2407 (2005)Google Scholar
  7. G. Accary, H. Meyer, Phys. Rev. E 74, 046308 (2006)Google Scholar
  8. G. Accary, I. Raspo, P. Bontoux, B. Zappoli, Phys. Rev. E, 72, 035301R (2005)Google Scholar
  9. S. Amiroudine, B. Zappoli, Phys. Rev. Lett. 90, 105303-1 (2003)Google Scholar
  10. A. Furukawa, H. Meyer, A. Onuki, Phys. Rev. E 71, 067301 (2005)Google Scholar
  11. A. Furukawa, A. Onuki, Phys. Rev. E 66, 016302 (2002)Google Scholar
  12. A. Nakano, M. Shiraishi, Cryogenics 44, 867 (2004)Google Scholar
  13. S. Paolucci, Sandia Rep. SAND 82-8247 (1982)Google Scholar
  14. X. He, G.D. Doolen, T. Clark, J. Comp. Phys. 179, 439 (2002)Google Scholar
  15. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon Press, Oxford, 2001)Google Scholar
  16. S. Chen, G.D. Doolen, Ann. Rev. Fluid Mech. 30, 329 (1998)Google Scholar
  17. M.C. Sukop, D.T. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer-Verlag, Berlin, 2005)Google Scholar
  18. R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, D. Joseph, Int. J. Multiphase Flow 29, 117 (2003)Google Scholar
  19. G. Hazi, A. Imre, G. Mayer, I. Farkas, Ann. Nucl. Energy 29, 1421 (2002)Google Scholar
  20. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)Google Scholar
  21. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)Google Scholar
  22. H. Chen, S. Chen, W.H. Matthaeus, Phys. Rev. A 45, R5339 (1992)Google Scholar
  23. T. Inamuro, M. Yoshino, H. Inoue, R. Mizuno, F. Ogino, J. Comp. Phys. 179, 201 (2002)Google Scholar
  24. T. Inamuro, M. Yoshino, F. Ogino, Phys. Fluids 7, 2928 (1995)Google Scholar
  25. G. Hazi, A. Markus, Phys. Rev. E (submitted)Google Scholar
  26. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics 2 (Springer-Verlag, Berlin, 1988)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.KFKI Atomic Energy Research InstituteBudapestHungary

Personalised recommendations