Advertisement

The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 223–228 | Cite as

Capillary filling for multicomponent fluid using the pseudo-potential Lattice Boltzmann method

  • S. Chibbaro
  • L. Biferale
  • F. Diotallevi
  • S. Succi
Article

Abstract

We present a systematic study of capillary filling for a binary fluid by using mesoscopic a lattice Boltzmann model describing a diffusive interface moving at a given contact angle with respect to the walls. We compare the numerical results at changing the ratio the typical size of the capillary, H, and the wettability of walls. Numerical results yield quantitative agreement with the theoretical Washburn law, provided that the channel height is sufficiently larger than the interface width and variations of the dynamic contact angle with the capillary number are taken into account.

Keywords

Contact Angle European Physical Journal Special Topic Capillary Number Channel Height Static Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Washburn, Phys. Rev. 27, 273 (1921)Google Scholar
  2. R. Lucas, Kooloid-Z 23, 15 (1918)Google Scholar
  3. J. Szekelely, A.W. Neumann, Y.K. Chuang, J. Coll. Int. Sci. 35, 273 (1971)Google Scholar
  4. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)Google Scholar
  5. L.J. Yang, T.J. Yao, Y.C. Tai, J. Micromech. Microeng. 14, 220 (2004)Google Scholar
  6. N.R. Tas, et al., Appl. Phys. Lett. 85, 3274 (2004)Google Scholar
  7. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)Google Scholar
  8. Kang, Zhang, Chen PHF 14, 3203 (2002)Google Scholar
  9. S. Arcidiacono, I.V. Karlin, J. Mantzaras, C.E. Frouzakis, Phys. Rev. E 76, 046703 (2007)Google Scholar
  10. D.A. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann Models (Springer, Berlin, 2000)Google Scholar
  11. Hou, Shan, Zou, Doolen, Soll, JCP 138 (1997)Google Scholar
  12. M. Latva-Kokko, D.H. Rothman, Phys. Rev. Lett. 98, 254503 (2007)Google Scholar
  13. L. Dos Santos, F. Wolf, P. Philippi, J. Stat. Phys. 121, 197 (2005)Google Scholar
  14. F. Diotallevi, L. Biferale, S. Chibbaro, F. Toschi, S. Succi [arXiv:0806.1862]Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • S. Chibbaro
    • 1
  • L. Biferale
    • 2
  • F. Diotallevi
    • 1
  • S. Succi
    • 1
  1. 1.Istituto per le Applicazioni del Calcolo CNR, Viale del Policlinico 137RomaItaly
  2. 2.Department of Physics and INFNUniversity of Tor VergataRomaItaly

Personalised recommendations