The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 205–212 | Cite as

Fluid simulation and X-ray CT images for soot deposition in a diesel filter

  • K. YamamotoEmail author
  • S. Satake
  • H. Yamashita
  • N. Takada
  • M. Misawa


Recently, stricter diesel particulate emission standards have been set in many countries. As for the after-treatment of exhaust gas, a diesel filter has been developed to trap diesel particles inside small-scale porous structure. Since measurement of flow in the filter is impossible, the phenomena of particle deposition in the filter are not well understood. In this study, we conducted Lattice Boltzmann simulation on flow in the newly developed diesel filter. The soot deposition was included to consider the particle trap in the filter. The inner structure of the diesel filter as well as trapped soot region was scanned by an X-ray CT technique. Results show that the flow pattern is largely changed when the soot is attached to the filter surface. By comparing simulation results with CT images, soot accumulation region is well predicted. It is found that the amount of trapped soot is proportional to the filter back-pressure even when soot deposition probability is changed.


Diesel European Physical Journal Special Topic Soot Particle Lattice Boltzmann Soot Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.C. Clerc, Appl. Catal. B-Environ. 10, 99 (1996)Google Scholar
  2. A.G. Konstandopoulos, et al., SAE Technical Paper 2000-01-1016 (2000)Google Scholar
  3. E. Wirojsakunchai, et al., SAE Technical Paper 2007-01-0320 (2007)Google Scholar
  4. A.M. Stamatelos, Energy Conv. Manag. 38, 83 (1997)Google Scholar
  5. K. Yamamoto, et al., Int. J. Mod. Phys. C 18, 528 (2007)Google Scholar
  6. K. Yamamoto, S. Satake, H. Yamashita, N. Takada, M. Misawa, Math. Comput. Simul. 72, 257 (2006)Google Scholar
  7. K. Yamamoto, F. Ochi, J. Energy Inst. 79, 195 (2006)Google Scholar
  8. G. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)Google Scholar
  9. S. Succi, E. Foti, F. Higuera, Europhys. Lett. 10, 433 (1989)Google Scholar
  10. A. Cancelliere, C. Chang, E. Foti, D.H. Rothman, S. Succi, Phys. Fluids A 2, 2085 (1990)Google Scholar
  11. Y.H. Qian, D. d'Humiéres, P. Lallemand, Europhys. Lett. 17, 479 (1992)Google Scholar
  12. T. Inamuro, M. Yoshino, F. Ogino, Int. J. Numer. Meth. Fluids 29, 737 (1999)Google Scholar
  13. J. Bernsdorf, G. Brenner, F. Durst, Comput. Phys. Commun. 129, 247 (2000)Google Scholar
  14. M. Yoshino, T. Inamuro, Int. J. Numer. Meth. Fluids 43, 183 (2003)Google Scholar
  15. M. Misawa, I. Tiseanu, R. Hirashima, K. Koizumi, Y. Ikeda, Key Eng. Mater. 270–273, 1135 (2004)Google Scholar
  16. B. Chopard, A. Masselot, A. Dupuis, Comput. Phys. Commun. 129, 167 (2000)Google Scholar
  17. O. Filippova, D. Hänel, Comput. Fluids 26, 697 (1997)Google Scholar
  18. Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)Google Scholar
  19. W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (John Wiley & Sons, Inc., USA, 1999)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • K. Yamamoto
    • 1
    Email author
  • S. Satake
    • 1
  • H. Yamashita
    • 1
  • N. Takada
    • 2
  • M. Misawa
    • 2
  1. 1.Department of Mechanical Science and EngineeringNagoya UniversityAichiJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan

Personalised recommendations