The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 159–165 | Cite as

Lattice Boltzmann model for multi-component mass transfer in a solid oxide fuel cell anode with heterogeneous internal reformation and electrochemistry

  • W. K.S. ChiuEmail author
  • A. S. Joshi
  • K. N. Grew


Recent advances in the lattice Boltzmann method (LBM) have made possible the simulation of multi-component gas transport in complex geometries like porous solid oxide fuel cell (SOFC) electrodes. As an example application, a five species LBM mass diffusion model is coupled with a multi-step reaction mechanism for heterogeneous reformation at chemically active sites and electrochemistry at the triple phase boundaries (TPB). A state-of-the-art imaging technique employing high resolution 42.7 nm x-ray computed tomography (XCT) is used to reconstruct the porous anode to provide geometry input to the LBM model. The result is a pore-scale LBM tool that has the potential to simulate the SOFC mass transfer process in unprecedented detail. Some preliminary, two-dimensional (2D) results are presented for mass transfer in an anode-supported SOFC with direct internal reforming of methane. It is seen that the LBM predictions for species concentrations are qualitatively consistent. Future work involves extending the LBM to three dimensions (3D), incorporating detailed geometric information about active sites and TPB location and validation of model predictions with experiments.


European Physical Journal Special Topic Solid Oxide Fuel Cell Lattice Boltzmann Method Polymer Electrolyte Membrane Fuel Cell Triple Phase Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Zhu, R.J. Kee, V.M. Janardhanan, O. Deutschmann, D.G. Goodwin, J. Electrochem. Soc. 152, A2427 (2005)Google Scholar
  2. J.D.J. Vandersteen, B. Kenney, J.G. Pharoah, K. Karan, Canadian Hydrogen and Fuel Cells Conference (September 2004)Google Scholar
  3. J.B. Young, Ann. Rev. Fluid Mech. 39, 193 (2007)Google Scholar
  4. S. Kakac, A. Pramuanjaroenkij, X.Y. Zhou, Int. J. Hydr. Energy 32, 761 (2007)Google Scholar
  5. S. Chen, G.D. Doolen, Ann. Rev. Fluid Mech. 30, 329 (1998)Google Scholar
  6. S. Succi, The Lattice Boltzmann Method: For Fluid Dynamics and Beyond (Oxford University Press, New York, 2001)Google Scholar
  7. M.C. Sukop, D.T. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer, Berlin, Heidelberg, 2006)Google Scholar
  8. L.-S. Luo, S.S. Girimaji, Phys. Rev. E 67, 066302 (2003)Google Scholar
  9. M.E. McCracken, J. Abraham, Phys. Rev. E 71, 046704 (2005)Google Scholar
  10. A.S. Joshi, A.A. Peracchio, K.N. Grew, W.K.S. Chiu, J. Phys. D: App. Phys. 40, 2961 (2007)Google Scholar
  11. A.S. Joshi, A.A. Peracchio, K.N. Grew, W.K.S. Chiu, J. Phys. D: App. Phys. 40, 7593 (2007)Google Scholar
  12. A.S. Joshi, K.N. Grew, A.A. Peracchio, W.K.S. Chiu, J. Power Sources 164, 631 (2007)Google Scholar
  13. K.N. Grew, A.S. Joshi, A.A. Peracchio, W.K.S. Chiu, ASME International Mechanical Engineering Congress and Exposition (Paper No. IMECE2006-13621, Chicago, IL, November 5-10, 2006)Google Scholar
  14. A.S. Joshi, J.R. Izzo Jr., K.N. Grew, A.A. Peracchio, W.K.S. Chiu, ASME J. Fuel Cell Sci. Tech. (in press)Google Scholar
  15. P. Asinari, M.C. Quaglia, M.R. Vonspakovsky, B.V. Kasula, J. Power Sources, 170, 359 (2007)Google Scholar
  16. L.-P. Wang, B. Afsharpoya, Math. Comput. Simul. 72, 242 (2006)Google Scholar
  17. X.-D Niu, T. Munekata, S.-A. Hyodo, K. Suga, J. Power Sources 172, 542 (2007)Google Scholar
  18. J. Park, M. Matsubara, X. Li, J. Power Sources 173, 404 (2007)Google Scholar
  19. A. Bieberle, L.J. Gauckler, Solid State Ionics 146, 23 (2002)Google Scholar
  20. W.G. Bessler, Solid State Ionics 176, 997 (2005)Google Scholar
  21. J.R. Izzo Jr., A.S. Joshi, K.N. Grew, W.K.S. Chiu, A. Tkachuk, S. Wang, W. Yun, J. Electrochem. Soc. 155, B504 (2008)Google Scholar
  22. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd Edition (Wiley, New York, 2002)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations