The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 151–157 | Cite as

A lattice Boltzmann method for a two-phase flow containing solid bodies with viscoelastic membranes

  • M. YoshinoEmail author
  • T. Murayama


A lattice Boltzmann method (LBM) for two-phase flows containing solid bodies with viscoelastic membranes is proposed. The method is based on the two-phase LBM, in which one phase is regarded as the solid phase. In the present model, the membrane is assumed to be composed of identical particles that are connected to their neighboring particles by elastic springs to take account of stretching and compression effects. The method is applied to two representative problems, namely the behavior of a viscoelastic body under shear flow and the motion of a viscoelastic body in a Poiseuille flow. Tank-tread motion and axial migration, which are both characteristic of the motion of viscoelastic bodies, are simulated by using the method. These results indicate that the method is capable of simulating the complex behavior of viscoelastic bodies in capillaries, such as the motion of red blood cells in blood flows.


European Physical Journal Special Topic Material Point Lattice Boltzmann Method Bottom Wall Elastic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. Shiga, N. Maeda, K. Kon, Crit. Rev. Oncol. Hematol. 10, 9 (1990)Google Scholar
  2. N. Maeda, T. Shiga, J. Blood Rheol. 7, 3 (1993)Google Scholar
  3. K. Boryczko, W. Dzwinel, D.A. Yuen, J. Mol. Model. 9, 16 (2003)Google Scholar
  4. W. Dzwinel, K. Boryczko, D.A. Yuen, J. Coll. Interf. Sci. 258, 163 (2003)Google Scholar
  5. N. Tanaka, T. Takano, Int. J. Comput. Methods 2, 555 (2005)Google Scholar
  6. J.J. Monaghan, Comput. Phys. Commun. 48, 89 (1988)Google Scholar
  7. J.J. Monaghan, J. Comput. Phys. 110, 399 (1994)Google Scholar
  8. K. Tsubota, S. Wada, T. Yamaguchi, Comput. Methods Programs Biomed. 83, 139 (2006)Google Scholar
  9. S. Koshizuka, Comput. Fluid Dyn. J. 4, 29 (1995)Google Scholar
  10. T.M. Fischer, H.S. Schönbein, Blood Cells 3, 351 (1977)Google Scholar
  11. T.M. Fischer, Biophys. J. 32, 863 (1980)Google Scholar
  12. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992)Google Scholar
  13. S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)Google Scholar
  14. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)Google Scholar
  15. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)Google Scholar
  16. A.J.C. Ladd, Phys. Rev. Lett. 76, 1392 (1996)Google Scholar
  17. A.J.C. Ladd, Phys. Fluids 9, 491 (1997)Google Scholar
  18. C.K. Aidun, Y. Lu, J. Stat. Phys. 81, 49 (1995)Google Scholar
  19. D. Qi, Int. J. Mod. Phys. C 8, 985 (1997)Google Scholar
  20. D. Qi, J. Fluid Mech. 385, 41 (1999)Google Scholar
  21. T. Inamuro, K. Maeba, F. Ogino, Int. J. Multiphase Flow 26, 1981 (2000)Google Scholar
  22. T. Inamuro, T. Ogata, S. Tajima, N. Konishi, J. Comput. Phys. 198, 628 (2004)Google Scholar
  23. T. Inamuro, Fluid Dyn. Res. 38, 641 (2006)Google Scholar
  24. G. Segré, A. Silberberg, Nature 189, 209 (1961)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Department of Mechanical Systems EngineeringShinshu UniversityNaganoJapan
  2. 2.CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shiSaitamaJapan

Personalised recommendations