Advertisement

The European Physical Journal Special Topics

, Volume 171, Issue 1, pp 99–104 | Cite as

Higher-order lattice Boltzmann simulation of energy conversion of electrokinetic nanobatteries

  • Y. Liu
  • J. YangEmail author
Article
  • 115 Downloads

Abstract

As a novel green technology to harvest electric power, electrokinetic batteries appeal to more theoretical investigation in order to optimize their physical parameters, and hence to achieve higher energy conversion efficiency at nanoscales as expected. Generally, transport phenomena at nanoscales are out of the scope of continuum fluid mechanics theories. In addition, the electric double layer (EDL) requires a more comprehensive description incorporating image effect and ion size effect. In this study, the higher-order Lattice Boltzmann method (LBM) and the modified Poisson-Boltzmann theory (MPB) are used to investigate electrokinetic phenomena in nanochannels. Energy conversion is studied in terms of ion size, and dielectric properties of liquid and solid. 24.95% mechanical-electrical energy conversion efficiency may be achieved in a 16 nm electrokinetic battery. And hence about 6% mechanical energy can be utilized by the external load of the electrokinetic nanobattery.

Keywords

Energy Conversion European Physical Journal Special Topic Electric Double Layer Lattice Boltzmann Method Image Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Daiguji, P.D. Yang, A.J. Szeri, A. Majumdar, Nano Lett. 4, 2315 (2004)Google Scholar
  2. J. Yang, F.Z. Lu, L.W. Kostiuk, D.Y. Kwok, J. Micromech. Microeng. 13, 963 (2003)Google Scholar
  3. F.H. van dear Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Nano Lett. 6, 2232 (2006)Google Scholar
  4. F.H. van dear Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Nano Lett. 7, 1022 (2007)Google Scholar
  5. J.H. Masliyah, Electrokinetic Transport Phenomena (Alberta Oil Sands Technology and Research Authority, Edmonton, Alberta, 1994)Google Scholar
  6. J. Lyklema, Fundamentals of Interface and Colloid, Vol. II (Academic Press, 1995)Google Scholar
  7. C.W. Outhwaite, L.B. Bhuiyan, S. Levine, J. Chem. Soc. Faraday Trans. II 79, 707 (1983)Google Scholar
  8. L.B. Bhuiyan, C.W. Outhwaite, Phys. Chem. Chem. Phys. 6, 3467 (2004)Google Scholar
  9. F. Toschi, S. Succi, Europhys. Lett. 69, 549 (2005)Google Scholar
  10. X. Nie, G.D. Doolen,S. Chen, J. Stat. Phys. 107, 279 (2002)Google Scholar
  11. Y. Zhou, R. Zhang, I. Staroselsky, H. Chen, W.T. Kim, M.S. Jhon, Physica A 362, 68 (2006)Google Scholar
  12. X.W. Shan, X.F. Yuan, H.D. Chen, J. Fluid. Mech. 550, 413 (2006)Google Scholar
  13. R.Y. Zhang, X.W. Shan, H.D. Chen, Phys. Rev. E. 74, 046703 (2006)Google Scholar
  14. X.W. Shan, X.Y. He, Phys. Rev. Lett. 80, 65 (1998)Google Scholar
  15. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press Inc. Ltd., 1985)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringUniversity of Western OntarioOntarioCanada

Personalised recommendations