Prediction of vortex shedding from a circular cylinder using a volumetric Lattice-Boltzmann boundary approach

  • Y. LiEmail author
  • R. Zhang
  • R. Shock
  • H. Chen


An extended boundary scheme based on the generalized volumetric boundary algorithm for Lattice-Boltzmann method (LBM) is proposed in this paper. This approach applies a local non-equilibrium based scattering correction to the outgoing particle distributions that bounced-back from a solid surface. The correction reduces the near wall numerical smearing when enforcing the no-slip boundary condition and leads to accurate prediction of flow separations on a curved surface. A set of quantitative numerical studies of flow past a circular cylinder at low Reynolds numbers is conducted. Important flow quantities that characterize the vortex shedding phenomena behind cylinder are accurately predicted.


Vortex Circular Cylinder European Physical Journal Special Topic Strouhal Number Lattice Boltzmann Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Chen, G. Doolen, Ann. Rev. Fluid Mech. 30, 329 (1997)Google Scholar
  2. X. Shan, X. Yuan, H. Chen, J. Fluid Mech. 550, 413 (2006)Google Scholar
  3. H. Chen, S. Chen, W. Matthaeus, Phys. Rev. A 45, 5339 (1992)Google Scholar
  4. H. Chen, C. Teixeira, K. Molvig, Int. J. Mod. Phys. C 8, 675 (1997)Google Scholar
  5. Y. Qian, D. d'Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992)Google Scholar
  6. R. Zhang, X. Shan, H. Chen, Phys. Rev. E 74, 046703 (2006)Google Scholar
  7. H. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, V. Yakhot, Science 301, 633 (2003)Google Scholar
  8. Y. Li, R. Shock, R. Zhang, H. Chen, J. Fluid Mech. 519, 273 (2004)Google Scholar
  9. R. Shock, S. Mallick, H. Chen, V. Yakhot, R. Zhang, AIAA J. Aircraft 39, 434 (2002)Google Scholar
  10. H. Chen, C. Teixeira, K. Molvig, Int. J. Mod. Phys. C 9, 1281 (1998)Google Scholar
  11. O. Filippova, D. Hanel, Int. J. Mod. Phys. C 147, 1271 (1998)Google Scholar
  12. R. Mei, W. Shyy, J. Comput. Phys. 143, 426 (1998)Google Scholar
  13. I. Ginzburg, D. d'Humières, Phys. Rev. E 68, 066614 (2003)Google Scholar
  14. X. He, G.D. Doolen, J. Comput. Phys. 134, 306 (1997)Google Scholar
  15. X. He, G.D. Doolen, Phys. Rev. E 56, 434 (1997)Google Scholar
  16. H. Chen, Phys. Rev. E 58, 3955 (1998)Google Scholar
  17. PowerFLOW 4.0d Users Guide, 2006Google Scholar
  18. S. Chen, H. Chen, D. Martinez, W. Matthaeus, Phys. Rev. Lett. 67, 3776 (1991)Google Scholar
  19. P. Bhatnagar, E. Gross, M. Krook, Phys. Rev. 94, 511 (1954)Google Scholar
  20. U. Frisch, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986)Google Scholar
  21. H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, R. Zhang, Phys. A 362, 158 (2006)Google Scholar
  22. C.H.K. Williamson, J. Fluid Mech. 206, 579 (1989)Google Scholar
  23. C.H.K. Williamson, A. Roshko, Z. Flugwiss. Weltraumforsch. 14, 38 (1990)Google Scholar
  24. R.D. Henderson, Phys. Fluids 7, 2102 (1995)Google Scholar
  25. C. Liu, X. Zheng, C.H. Sung, J. Comp. Phys. 139, 35 (1998)Google Scholar
  26. R.S. Surmas, L.O.E.D. Santos, P.C. Philippi, Future Gen. Comp. Sys. 20, 951 (2004)Google Scholar
  27. M. Braza, P. Chassaing, H. Ha Minh, J. Fluid Mech. 165, 79 (1986)Google Scholar
  28. D. Calhoun, J. Comp. Phys. 176, 231 (2002)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Exa Corporation, 55 Network DriveBurlingtonUSA

Personalised recommendations