Advertisement

Modelling capillary filling dynamics using lattice Boltzmann simulations

  • C. M. Pooley
  • H. Kusumaatmaja
  • J. M. YeomansEmail author
Article

Abstract

We investigate the dynamics of capillary filling using two lattice Boltzmann schemes: a liquid-gas model and a binary model. The simulation results are compared to the well-known Washburn's law, which predicts that the filled length of the capillary scales with time as lt 1/2. We find that the liquid-gas model does not reproduce Washburn's law due to condensation of the gas phase at the interface, which causes the asymptotic behaviour of the capillary penetration to be faster than t 1/2. The binary model, on the other hand, captures the correct scaling behaviour when the viscosity ratio between the two phases is sufficiently high.

Keywords

Contact Angle European Physical Journal Special Topic Viscosity Ratio Dynamic Contact Angle Binary Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Washburn, Phys. Rev. 17, 273 (1921)Google Scholar
  2. S. Levine, J. Lowndes, E.J. Watson, G. Neale, J. Colloid Interf. Sci. 73, 136 (1980)Google Scholar
  3. P. Raiskinmäki, A. Shakib-Manesh, A. Jäsberg, A. Koponen, J. Merikoski, J. Timonen, J. Stat. Phys. 107, 143 (2002)Google Scholar
  4. L.O.E. dos Santos, F.G. Wolf, P.C. Philippi, J. Stat. Phys. 121, 197 (2005)Google Scholar
  5. F. Diotallevi, L. Biferale, S. Chibbaro, G. Pontrelli, S. Succi, Eur. Phys. J. B (submitted)Google Scholar
  6. S. Chibbaro, L. Biferale, F. Diotallevi, S. Succi, Eur. Phys. J. B (submitted)Google Scholar
  7. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)Google Scholar
  8. J.M. Yeomans, Physica A 369, 159 (2006)Google Scholar
  9. S. Succi, The Lattice Boltzmann Equation; for Fluid Dynamics and Beyond (Oxford University Press, 2001)Google Scholar
  10. C.M. Pooley, H. Kusumaatmaja, J.M. Yeomans (in preparation)Google Scholar
  11. A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)Google Scholar
  12. A.J. Briant, J.M. Yeomans, Phys. Rev. E 69, 031603 (2004)Google Scholar
  13. C.M. Pooley, K. Furtado, PRE (submitted)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.The Rudolf Peierls Centre for Theoretical Physics, Oxford UniversityOxfordUK

Personalised recommendations