A mean-field free energy lattice Boltzmann model for multicomponent fluids

  • J. ZhangEmail author
  • D. Y. Kwok


We propose a mean-field free energy approach to simulate multi- component fluids. The model has been validated in terms of the Laplace equation of capillarity and dispersion relation of interfacial waves. Simulations of a ternary system shows that the total free energy decreases and reaches a minimum after phase separation has occurred. Different drop shapes can be obtained by adjusting the interaction strengths between individual components. These results demonstrate that both macroscopic free energy and microscopic fluid-fluid interactions have been well described in our multicomponent model.


European Physical Journal Special Topic Lattice Boltzmann Method Total Free Energy Multiphase Model Interfacial Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. N.S. Martys, J.G. Hagedorn, Mater. Struct. 35, 650 (2002)Google Scholar
  2. J. Zhang, D.Y. Kwok, Phys. Rev. E 70, 056701 (2004)Google Scholar
  3. J. Zhang, D.Y. Kwok, Langmuir 22, 4998 (2006)Google Scholar
  4. D. Rothman, J. Keller, J. Stat. Phys. 52, 1119 (1988)Google Scholar
  5. A. Gunstensen, D. Rothman, S. Zaleski, G. Zanetti, Phys. Rev. A 43, 4320 (1991)Google Scholar
  6. X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)Google Scholar
  7. X. Shan, G. Doolen, J. Stat. Phys. 81, 379 (1995)Google Scholar
  8. M.R. Swift, W.R. Osborn, F.M. Yeomans, Phys. Rev. E 54, 5041 (1996)Google Scholar
  9. S. Succi, The Lattice Boltzmann Equation (Oxford University Press, Oxford, 2001)Google Scholar
  10. J. Zhang, B. Li, D.Y. Kwok, Phys. Rev. E 69, 032602 (2004)Google Scholar
  11. M.R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)Google Scholar
  12. J. Zhang, D.Y. Kwok, J. Coll. Interf Sci. 282, 434 (2005)Google Scholar
  13. J. Zhang, D.Y. Kwok, Langmuir 20, 8137 (2004)Google Scholar
  14. X. Fu, B. Li, J. Zhang, F. Tian, D.Y. Kwok, Int. J. Mod Phys. C 18 693 (2007)Google Scholar
  15. Q. Li, A.J. Wagner, Phys. Rev. E 76, 036701 (2007)Google Scholar
  16. A. Lamura, G. Gonnella, J.M. Yeomans, Europhys. Letts. 45, 314 (1999)Google Scholar
  17. A.E. van Giessen, B. Widom, Fluid Phase Equilibria 164, 1 (1999)Google Scholar
  18. A.J. Wagner, J.M. Yeomans, Phys. Rev. E 59, 4366 (1999)Google Scholar
  19. D.E. Sullivan, J. Chem. Phys. 74, 2604 (1981)Google Scholar
  20. R. Benzi, S. Succi, M. Vergassola, Phys. Reports 222, 145 (1992)Google Scholar
  21. J. Kim, Modeling and Simulation of Multi-Component, Multi-Phase Fluid Flows. Ph.D. thesis, University of Minnesota, School of Mathematics, 2002Google Scholar
  22. J. Kim, K. Kang, J. Lowengrub, Comm. Math. Sci. 2, 53 (2004)Google Scholar
  23. D. Porter, K. Easterling, Phase Transformations in Metals Alloys (Chapman and Hall, London, 1992)Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.School of Engineering, Laurentian UniversityOntarioCanada
  2. 2.Department of Mechanical Engineering, Schulich School of Engineering, University of CalgaryNanoscale Technology and Engineering LaboratoryCalgaryCanada

Personalised recommendations