Advertisement

The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 171–176 | Cite as

Asphaltene multilayer growth in porous medium probed by SANS

  • J. Gummel
  • Y. Corvis
  • J. Jestin
  • J. M’Hamdi
  • L. BarréEmail author
Regular Article

Abstract

Presence of suspended particles such as asphaltene in crude oils could significantly affect the production by means of deposition in porous media especially near the well bore. We investigate this phenomenon using the ability of Small Angle Neutron Scattering technique to probe directly the asphaltene adsorption process in a porous medium at the nanometer length scale under flow conditions. A device based on a quartz tube filled with SiC particles constitute the porous medium in which an asphaltene solution in a mixture of good (toluene)/bad (heptane) solvent is injected under controlled flow. The contrast matching technique enables to match the porous medium scattering contributions and to measure the signal of the deposit. Such a device can be used for curves surface measurements on a setup originally designed for bulk studies and permit thus the direct comparison with measurements on flat surfaces (neutron reflectivity) and indirect adsorption measurements (adsorption isotherm). We show here that asphaltene in good solvent leads to a monolayer whereas addition of bad solvent results in a multilayer growth which is consistent with the deposition behaviour described in the literature.

Keywords

Porous Medium European Physical Journal Special Topic Well Bore Toluene Solution Deposition Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Leontaritis, G.A. Mansoori, J. Pet. Sci. Eng. 1, 229 (1988) Google Scholar
  2. J. Speight, Oil Gas Sci. Technol. – Rev. IFP 59, 479 (2004) Google Scholar
  3. G. Andreatta, N. Bostrom, O. Mullins, Langmuir 21, 2728 (2005) Google Scholar
  4. J. Jestin, S. Simon, L. Zupancic, L. Barré, Langmuir 23, 10471 (2007) Google Scholar
  5. L. Barré, S. Simon, T. Palermo, Langmuir 24, 3709 (2008) Google Scholar
  6. I.K. Yudin, G.L. Nikolaenko, E.E. Gorodetskii, V.I. Kosov, V.R. Melikyan, E.L. Markhashov, D. Frot, Y. Briolant, J. Pet. Sci. Eng. 20, 297 (1998) Google Scholar
  7. H. Yarranton, H. Hussein, J. Masliyah, J. Coll. Interf. Sci. 228, 52 (2000) Google Scholar
  8. S. Acevedo, M. Ranaudo, C. Garcia, J. Castillo, A. Fernandez, M. Caetano, S. Goncalvez, Coll. Surf. A 166, 145 (2000) Google Scholar
  9. S. Simon, J. Jestin, T. Palermo, L. Barré, Energy & Fuels (to be published) Google Scholar
  10. L. Goual, G. Horvath-Szabo, J. Masliyah, Z. Xu, Langmuir 21, 8278 (2005) Google Scholar
  11. N. Jouault, Y. Corvis, F. Cousin, J. Jestin, L. Barré, Langmuir (to be published) Google Scholar
  12. E. Boek, H. Ladva, J. Crawshaw, J. Padding, Energy & Fuels 22, 805 (2008) Google Scholar
  13. L. Nabzar, M. Aguiléra, Oil Gas Sci. Technol. – Rev. IFP 63, 21 (2008) Google Scholar
  14. N. Papadimitriou, G. Romanos, G. Charalambopoulou, M. Kainourgiakis, F. Katsaros, A. Stubos, J. Pet. Sci. Eng. 57, 281 (2007) Google Scholar
  15. L. Minssieux, L. Nabzar, G. Chauveteau, D. Longeron, R. Bensalem, Oil Gas Sci. Technol. 53, 313 (1998) Google Scholar
  16. D. Broseta, M. Robin, T. Savvidis, C. Féjean, M. Durandeau, H. Zhou, SPE, 59294 (2000) Google Scholar
  17. D. Fenistein, L. Barré, Fuel 80, 283 (2001) Google Scholar
  18. L. Nabzar, M.E. Aguilera, Y. Rajoub, SPE Int. Symp. Oilfield Chem. (2005) Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • J. Gummel
    • 1
  • Y. Corvis
    • 1
  • J. Jestin
    • 2
  • J. M’Hamdi
    • 1
  • L. Barré
    • 1
    Email author
  1. 1.Institut Français du Pétrole (IFP)Rueil-MalmaisonFrance
  2. 2.Laboratoire Léon Brilllouin, CEA/CNRS, CEA SaclayGif-sur-Yvette CedexFrance

Personalised recommendations