Advertisement

The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 151–156 | Cite as

Phase separation of carboxylic acids on graphite surface at submonolayer regime

  • M. D. Alba
  • A. K. Bickerstaffe
  • M. A. Castro
  • S. M. Clarke
  • S. Medina
  • C. Millán
  • M. M. Orta
  • E. Pavón
  • A. C. Perdigón
Regular Article

Abstract

Mixing behaviour of solid crystalline monolayers adsorbed onto graphite from different mixtures of undecanoic and dodecanoic acids at submonolayer coverage has been investigated. X-ray diffraction measurements have been collected from a variety of compositions as a function of temperature. An extensive phase separation is found for all the compositions – the scattering patterns characteristic of the pure material crystalline structures being preserved across the entire composition range. The temperature dependence of the monolayer melting points and their depression is also clearly indicative of separation of the two surface components, in clear contrast to that expected if the two carboxylic acids mixed ideally in the monolayer.

Keywords

European Physical Journal Special Topic Pure Component Dodecanoic Acid Graphite Surface Entire Composition Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.P. Cheah, L. Messe, S.M. Clarke, J. Phys. Chem. B 108, 4466 (2004) Google Scholar
  2. G. Wang, S. Lei, S. De Feyter, R. Feldman, J.E. Parker, S.M. Clarke, Langmuir 24, 2501 (2008) Google Scholar
  3. D.C. Duffy, A. Friedmann, S.A. Boggis, D. Klenerman, Langmuir 14, 6518 (1998) Google Scholar
  4. A.K. Bickerstaffe, N.P. Cheah, S.M. Clarke, J.E. Parker, A. Perdigon, L. Messe, A. Inaba, J. Phys. Chem. B 110, 5570 (2006) Google Scholar
  5. A.K. Bickerstaffe, L. Messe, S.M. Clarke, J. Parker, A. Perdigon, N.P. Cheah, A. Inaba, Phys. Chem. Chem. Phys. 6, 3545 (2004) Google Scholar
  6. A.K. Bickerstaffe, S.M. Clarke, Coll. Surf. A: Physicochem. Eng. Aspects 298, 80 (2007) Google Scholar
  7. E.P. Gilbert, P.A. Reynolds, J.A. White, J. Chem. Soc., Faraday Trans. 94, 1861 (1998) Google Scholar
  8. A.J. Groszek, Proc. R. Soc. London A 413, 473 (1970) Google Scholar
  9. K. Morishige, T.J. Kato, Chem. Phys. 111, 7095 (1999) Google Scholar
  10. C. Marti, C. de Beauvais, T. Ceva, B. Croset, M. Goldmann, Phys. Stat. Solidi B 152, 463 (1989) Google Scholar
  11. I.E. Polishchuk, V.E. Oliker, V.B. Voitovich, I.V. Goshtovt, Trenie i Iznos 8, 467 (1987); V.E. Oliker, A.S. Klimanov, G.A. Bovkun, Poroshk. Metall. 2, 94 (1987); V.E. Oliker, Powder Metall. Metal Ceram. Powder Metall. Metal Ceram. 29, 535 (1990); Ch. Charbon, R. LeSar, Modell. Simul. Mater. Sci. Eng. 5, 53 (1997) Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • M. D. Alba
    • 1
  • A. K. Bickerstaffe
    • 2
  • M. A. Castro
    • 1
  • S. M. Clarke
    • 2
  • S. Medina
    • 1
  • C. Millán
    • 1
  • M. M. Orta
    • 1
  • E. Pavón
    • 1
  • A. C. Perdigón
    • 3
  1. 1.Instituto Ciencia Materiales de Sevilla-Departamento Química Inorgánica, CSIC-Universidad de SevillaSevillaSpain
  2. 2.Department of Chemistry and BP Institute, University of CambridgeCambridgeUK
  3. 3.Dpt. Ingeniería Química y Química Inorgánica, Universidad de CantabriaSantanderSpain

Personalised recommendations