Advertisement

The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 143–150 | Cite as

Melting of thin films of alkanes on magnesium oxide

  • T. Arnold
  • A. Barbour
  • S. Chanaa
  • R. E. Cook
  • D. Fernandez-Canato
  • P. Landry
  • T. Seydel
  • P. Yaron
  • J. Z. Larese
Regular Article

Abstract

Recent incoherent neutron scattering investigations of the dynamics of thin alkane films adsorbed on the Magnesium Oxide (100) surface are reported. There are marked differences in the behaviour of these films, as a function of temperature and coverage, compared to similar measurements on graphite. In particular, it has previously been shown that adsorbed multilayer films on graphite exhibit an interfacial solid monolayer that coexists with bulk-like liquid, well above the bulk melting point. In contrast, these studies show that the alkane films on MgO exhibit no such stabilization of the solid layer closest to the substrate as a function of the film thickness, even though the monolayer crystal structures are remarkably similar. These studies are supported by extensive thermodynamic data, a growing body of structural data from neutron diffraction and state of the art computer modelling

Keywords

Alkane Pentane European Physical Journal Special Topic Melting Transition NIST Chemistry WebBook 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Lee, M.T. Alkhafaji, A.D. Migone, Langmuir 13, 2791 (1997) Google Scholar
  2. S.M. Clarke, et al., J. Therm. Anal. Calorim. 57, 643 (1999) Google Scholar
  3. P. Espeau, J.W. White, R.J. Papoular, Appl. Surf. Sci. 252, 1350 (2005) Google Scholar
  4. M.D. Alba, et al., Solid State Nucl. Magn. Res. 23, 174 (2003) Google Scholar
  5. J.Z. Larese, R.J. Rollefson, Carbon 20, 136 (1982) Google Scholar
  6. J.P. Rabe, S. Buchholz, Science 253, 424 (1991) Google Scholar
  7. L. Giancarlo, et al., Langmuir 14, 1465 (1998) Google Scholar
  8. H. Freimuth, et al., Phys. Rev. B 42, 587 (1990) Google Scholar
  9. J.Z. Larese, Q.M. Zhang, Phys. Rev. Lett. 64, 922 (1990) Google Scholar
  10. K. Morishige, T. Kato, J. Chem. Phys. 111, 7095 (1999) Google Scholar
  11. T. Arnold, et al., PCCP 4, 345 (2002) Google Scholar
  12. F. Kruchten, et al., Langmuir 21, 7507 (2005) Google Scholar
  13. M. Bienfait, Surf. Sci. 89, 13 (1979) Google Scholar
  14. R. Wang, et al., J. Chem. Phys. 82, 3465 (1985) Google Scholar
  15. J.P. Coulomb, M. Bienfait, J. Phys. (Paris) 47, 89 (1986) Google Scholar
  16. M. Bienfait, J.P. Coulomb, J.P. Palmari, Surf. Sci. 182, 557 (1987) Google Scholar
  17. M.A. Castro, et al., J. Phys. Chem. B 102, 10528 (1998) Google Scholar
  18. F.Y. Hansen, et al., Phys. Rev. Lett. 92 (2004) Google Scholar
  19. A.D. Enevoldsen, et al., J. Chem. Phys. 126 (2007) Google Scholar
  20. M.W. Roth, C.L. Pint, C. Wexler, Phys. Rev. B 71 (2005) Google Scholar
  21. C.L. Pint, Surf. Sci. 600, 921 (2006) Google Scholar
  22. M. Krishnan, S. Balasubramanian, PCCP 7, 2044 (2005) Google Scholar
  23. P. Smith, R.M. Lynden-Bell, W. Smith, Molec. Phys. 98, 255 (2000) Google Scholar
  24. L.W. Bruch, R.D. Diehl, J.A. Venables, Rev. Mod. Phys. 79, 1381 (2007) Google Scholar
  25. L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Oxford Univ. Press, 1997) Google Scholar
  26. T. Arnold, S.M. Clarke, Langmuir 24, 3325 (2008) Google Scholar
  27. A.J. Groszek, Nature 204, 680 (1964) Google Scholar
  28. A.J. Groszek, Proc. Roy. Soc., Ser. A 473 (1969) Google Scholar
  29. J.Z. Larese, Q.M. Zhang, Phys. Rev. B 51, 17023 (1995) Google Scholar
  30. Q.M. Zhang, J.Z. Larese, Phys. Rev. B 43, 938 (1991) Google Scholar
  31. P.N. Yaron, M.T.F. Telling, J.Z. Larese, Langmuir 22, 7203 (2006) Google Scholar
  32. T. Arnold, et al., Physica B 385-386, 205 (2006) Google Scholar
  33. M.L. Drummond, et al., Phys. Rev. B 73 (2006) Google Scholar
  34. A. Freitag, J.Z. Larese, Phys. Rev. B 62, 8360 (2000) Google Scholar
  35. M.A. Castro, et al., J. Phys. Chem. B 105, 8577 (2001) Google Scholar
  36. K.W. Herwig, et al., J. Chem. Phys. 107, 5186 (1997) Google Scholar
  37. Z. Mursic, et al., Rev. Sci. Instrum. 67, 1886 (1996) Google Scholar
  38. T. Arnold, R.E. Cook, J.Z. Larese, J. Phys. Chem. B 109, 8799 (2005) Google Scholar
  39. J.Z. Larese, Physica B 248, 297 (1998) Google Scholar
  40. Y. Larher, F. Angerand, Europhys. Lett. 7, 447 (1988) Google Scholar
  41. J.Z. Larese, et al., Phys. Rev. Lett. 8720 (2001) Google Scholar
  42. NIST Chemistry WebBook webbook.nist.gov/chemistry/ Google Scholar
  43. B.E. Warren, Phys. Rev. 59 (1941) Google Scholar
  44. H.B. Schilberg, H. Lauter, Surf. Sci. 208 (1989) Google Scholar
  45. M.A. Castro, et al., Phys. Chem. Chem. Phys. 1, 5203 (1999) Google Scholar
  46. T. Arnold, et al., Phys. Rev. B 74, 085421 (2006) Google Scholar
  47. J.Z. Larese, D. Fernandez Canoto (private communication) Google Scholar
  48. J.Z. Larese, et al., Physica B 385-386, 144 (2006) Google Scholar
  49. J.Z. Larese, et al., Phys. Rev. Lett. 101, 165302 (2008) Google Scholar
  50. J.Z. Larese, et al., Phys. Rev. Lett. 61, 432 (1988) Google Scholar
  51. F.Y. Hansen, et al., Phys. Rev. Lett. 83, 2362 (1999) Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • T. Arnold
    • 1
  • A. Barbour
    • 2
  • S. Chanaa
    • 2
  • R. E. Cook
    • 2
  • D. Fernandez-Canato
    • 2
  • P. Landry
    • 2
  • T. Seydel
    • 3
  • P. Yaron
    • 2
  • J. Z. Larese
    • 2
    • 4
  1. 1.Diamond Light Source, Harwell Science & Innovation Campus, ChiltonDidcotUK
  2. 2.University of TennesseeKnoxvilleUSA
  3. 3.Institut Laue-LangevinGrenoble Cedex 9France
  4. 4.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations