Advertisement

The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 113–119 | Cite as

A simultaneous multiwavelength dispersive X-ray reflectometer for time-resolved reflectometry

  • T. MatsushitaEmail author
  • E. Arakawa
  • Y. Niwa
  • Y. Inada
  • T. Hatano
  • T. Harada
  • Y. Higashi
  • K. Hirano
  • K. Sakurai
  • M. Ishii
  • M. Nomura
Regular Article

Abstract

Aiming for the realization of time-resolved specular X-ray reflectivity measurements on the sub-second to millisecond timescales, a conceptually new method of measuring specular X-ray reflectivity curves is developed. Using this method the entire profile of the reflectivity curve of interest is measured in place. A horizontally convergent X-ray beam which has a one-to-one correlation between its direction and energy is realized using a curved crystal or laterally graded multilayers on an elliptic substrate. The X-ray beam is then incident on the surface of the specimen placed at the focus such that the glancing angle in the vertical direction is the same for all X-ray components, which are reflected in the vertical direction by the surface and diverge in the horizontal plane. The perpendicular momentum transfer continuously changes as a function of the horizontal ray direction even with fixed glancing angle since the wavelength (energy) changes. The X-ray intensity distribution across the beam direction measured downstream of the specimen using a one- or two-dimensional detector represents the X-ray reflectivity curve. Specular X-ray reflectivity curves are measured with exposure times ranging from 2 ms to 1 s for a gold film of thickness 14.3 nm on a silicon substrate. The potential of this method for time-resolved measurements is demonstrated by recording reflectivity curves with a time resolution of 20 ms from a rotating specimen.

Keywords

European Physical Journal Special Topic Thick Gold Photon Factory Millisecond Timescale Curve Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.N. Stoev, K. Sakurai, Spectrochim. Acta B 54, 41 (1999) Google Scholar
  2. A. Gibaud, S. Hazra, Current Sci. 78, 1467 (2000) Google Scholar
  3. A.C. Richter, M.K. Durbin, C.J. Yu, P. Dutta, Langmuir 14, 5980 (1998) Google Scholar
  4. M. Gonzalez-Silveria, J. Rodriguez-Viejo, M.T. Clavaguera-Mora, T. Bigault, J.L. Labar, Phys. Rev. B 75, 075419 (2007) Google Scholar
  5. U. Vierl, G. Cevec, Biochim. Biophys. Acta 1325, 165 (1997) Google Scholar
  6. Y. Bodenthin, J. Grenzer, R. Layter, U. Pietsxh, P. Lehmann, D.G. Kurth, H. Mölhwald, J. Synchrotron Rad. 9, 206 (2002) Google Scholar
  7. M.J. Henderson, D. King, J.W. White, Austr. J. Chem. 56, 933 (2003) Google Scholar
  8. B. Paci, A.Generosi, V. Albertini, P. Perfetti, R. De Bettignies, J. Leroy, C. Sentein, Appl. Phys. Lett. 89, 043507 (2006) Google Scholar
  9. J.W. White, A.S. Brown, R.F. Garrett, D.J. King, T.L. Dowling, Aust. J. Phys. 52, 87 (1999) Google Scholar
  10. R.F. Garrett, J.W. White, D.J. King, T.L. Dowling, W. Fulllagar, Nucl. Instrum. Meth. A 467-468, 998 (2001) Google Scholar
  11. T. Matsushita, Y. Inada, Y. Niwa, M. Ishii, K. Sakurai, M. Nomura, J. Phys. Conf. Ser. 83, 012021 (2007) Google Scholar
  12. T. Matsushita, Y. Niwa, Y. Inada, M. Nomura, M. Ishii, K. Sakurai, E. Arakawa, Appl. Phys. Lett. 92, 024103 (2008) Google Scholar
  13. T. Matsushita, R.P. Phyzackerley, Jpn. J. Appl. Phys. 20, 2223 (1981) Google Scholar
  14. Y. Inada, A. Suzuki, Y. Niwa, M. Nomura, AIP Conf. Proc. 879, 1230 (2006) Google Scholar
  15. T. Tsuru, T. Tsutou, T. Hatano, M. Yamamoto, J. Electron Spectrosc. Relat. Phenom. 144-147, 1083 (2005) Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  • T. Matsushita
    • 1
    Email author
  • E. Arakawa
    • 2
  • Y. Niwa
    • 1
  • Y. Inada
    • 1
  • T. Hatano
    • 3
  • T. Harada
    • 3
  • Y. Higashi
    • 4
  • K. Hirano
    • 1
  • K. Sakurai
    • 5
  • M. Ishii
    • 5
  • M. Nomura
    • 1
  1. 1.Photon Factory, Institute of Materials Structure ScienceIbarakiJapan
  2. 2.Department of PhysicsTokyo Gakugei UniversityTokyoJapan
  3. 3.Center for Advanced Microscopy and Spectroscopy, IMRAM, Tohoku UniversitySendaiJapan
  4. 4.Engineering Center, High Energy Accelerator Research Organization, TsukubaIbarakiJapan
  5. 5.National Institute for Materials ScienceIbarakiJapan

Personalised recommendations