Advertisement

The European Physical Journal Special Topics

, Volume 167, Issue 1, pp 47–52 | Cite as

Modelling x-ray scattering from quantum dots using Keating energy-minimised structures

  • J. L. RawleEmail author
  • P. B. Howes
Regular Article

Abstract

In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.

Keywords

GaAs European Physical Journal Special Topic Equilibrium Bond Length Surface Unit Cell Pseudobinary Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Phillips, P. Bhattacharya, S.W. Kennerly, D.W. Beekman, M. Dutta, IEEE J. Quant. Electron. 35, 936 (1999) Google Scholar
  2. T. Lundstrom, W. Schoenfeld, H. Lee, P.M. Petroff, Science 286, 2312 (1999) Google Scholar
  3. L. Jacak, A. Wojs, P. Hawrylak, Quantum Dots (Springer-Verlag, Berlin, 1998) Google Scholar
  4. P.N. Keating, Phys. Rev. 145, 637 (1966) Google Scholar
  5. R.M. Martin, Phys. Rev. B 1, 4005 (1970) Google Scholar
  6. D.M. Bruls, J.W. A.M. Vugs, P.M. Koenraad, M.S. Skolnick, M. Hopkinson, J.H. Wolter, Appl. Phys. A 75, S205 (2001) Google Scholar
  7. D.M. Bruls, et al., Appl. Phys. Lett. 81, 1708 (2002) Google Scholar
  8. Y. Saito, R. Ohtsubo, K. Yamaguchi, Instit. Phys. Confer. Ser., 531 (2002) Google Scholar
  9. K. Yamaguchi, Y. Saito, R. Ohtsubo, Appl. Surf. Sci. 190, 212 (2002) Google Scholar
  10. GNU Scientific Library, http://www.gnu.org/software/gsl/ Google Scholar
  11. T. Walther, A.G. Cullis, D.J. Norris, M. Hopkinson, Phys. Rev. Lett. 86, 2381 (2001) Google Scholar
  12. P.A. Crozier, M. Catalano, R. Cingolani, Ultramicroscopy 94, 1 (2003) Google Scholar
  13. J. Shumway, et al., Phys. Rev. B 64, 125302 (2001) Google Scholar
  14. N. Liu, J. Tersoff, O. Baklenov, A.L. Holmes, C.K. Shih, Phys. Rev. Lett. 84, 334 (2000) Google Scholar
  15. M.A. Migliorato, A.G. Cullis, M. Fearn, J.H. Jefferson, Physica E 13, 1147 (2002) Google Scholar
  16. M.C. Schabel, J.L. Martins, Phys. Rev. B 43, 11873 (1991) Google Scholar
  17. A.S. Martins, B. Koiller, R.B. Capaz, Solid State Commun. 115, 287 (2000) Google Scholar
  18. M.A. Migliorato, A.G. Cullis, M. Fearn, J.H. Jefferson, Phys. Rev. B 65, 115316 (2002) Google Scholar
  19. M.A. Migliorato, A.G. Cullis, M. Fearn, J.H. Jefferson, Phys. Low-Dimens. Struct. 1-2, 61 (2002) Google Scholar
  20. J. Tersoff, Phys. Rev. B 39, 5566 (1989) Google Scholar
  21. L. Végard, Z. Phys. 5, 17 (1921) Google Scholar
  22. Y. Cai, M.F. Thorpe, Phys. Rev. B 46, 15879 (1992) Google Scholar
  23. P. Letardi, N. Motta, A. Balzarotti, J. Phys.-C-Solid State Phys. 20, 2853 (1987) Google Scholar
  24. P.M. Koenraad, et al., Physica E 17, 526 (2003) Google Scholar

Copyright information

© EDP Sciences and Springer 2009

Authors and Affiliations

  1. 1.Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, DidcotOxfordshireUK
  2. 2.University of Leicester, University RoadLeicesterUK

Personalised recommendations