Advertisement

The European Physical Journal Special Topics

, Volume 164, Issue 1, pp 117–126 | Cite as

Use of recurrence analysis to measure the dynamical stability of a multi-species community model

  • R. ProulxEmail author
  • P. Côté
  • L. Parrott
Article

Abstract

Quantifying the effects of species richness and environmental disturbance on the stability of communities is a long-standing challenge in ecology. In this study, multivariate recurrence analysis was used to assess the dynamical stability of modelled ecological communities subject to random, correlated environmental noise. Based on an analysis of biomass time series for each species, we show that two measures computed from the joint recurrence matrix, the Kolmogorov entropy and percent determinism, capture aspects of community stability that are not detected using the coefficient of variation for the whole community. In particular, when population fluctuations are correlated in time, recurrence analysis is a superior method for detecting the stabilizing effect of species richness on a community. We conclude that recurrence analysis is an appropriate tool for the analysis of ecological data, and that it may be particularly useful for detecting the relative importance of exogenous and endogenous drivers on the dynamics of ecological communities.

Keywords

Species Richness European Physical Journal Special Topic Dynamical Stability Multivariate Time Series Recurrence Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Dippner, R. Heerkloss, J.P. Zbilut, Marine Ecol. Progr. Ser. 242, 29 (2002) Google Scholar
  2. J.-P. Eckmann, S. Kamphorts, D. Ruelle, Europhys. Lett. 4, 973 (1987) Google Scholar
  3. P. Faure, H. Korn, Physica D 122, 265 (1998) Google Scholar
  4. H.C. Godfray, S.P. Blythe, Philos. Trans. Royal Soc. London B 330, 221 (1990) Google Scholar
  5. A. Gonzalez, J.B. Descamps, Oikos 106, 105 (2004) Google Scholar
  6. R.L. Habeeb, J. Trebilco, S. Wotherspoon, C.R. Johnson, Ecolog. Monogr. 75, 467 (2005) Google Scholar
  7. A. Hastings, TREE 19, 39 (2004) Google Scholar
  8. A. Hastings, C.L. Hom, S. Ellner, P. Turchin, C.H. Godfray, An. Rev. Ecolog. System. 24, 1 (1993) Google Scholar
  9. A.R. Ives, K. Gross, J.L. Klug, Science 286, 542 (1999) Google Scholar
  10. A.R. Ives, J.B. Hughes, Amer. Nat. 159, 388 (2002) Google Scholar
  11. C.L. Lehman, D. Tilman, Amer. Nat. 156, 534 (2000) Google Scholar
  12. J. Lhomme, T. Winkel, Theor. Pop. Biol. 62, 271 (2002) Google Scholar
  13. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007) Google Scholar
  14. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Phys. Rev. E 66, 026702 (2002) Google Scholar
  15. R.M. May, Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973) Google Scholar
  16. K. McCann, Nature 438, 228 (2000) Google Scholar
  17. J. McGrady-Steed, P.J. Morin, Ecology 438, 361 (2000) Google Scholar
  18. S. Naeem, Conserv. Biol. 12, 39 (1998) Google Scholar
  19. J.M. Nichols, S.T. Trickey, M. Seaver, Mech. Syst. Sign. Proc. 12, 421 (2006) Google Scholar
  20. L. Parrott, Ecolog. Complex. 1, 111 (2004) Google Scholar
  21. M. Pascual, S. Levin, Ecology 80, 2225 (1999) Google Scholar
  22. S.L. Pimm, Nature 307, 322 (1984) Google Scholar
  23. D. Rand, H. Wilson, Proc. R. Soc. London B 111 (1995) Google Scholar
  24. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh, Phys. Lett. A 330, 214 (2004) Google Scholar
  25. F. Royer, J.M. Fromentin, Marine Ecol. Progr. Ser. 319, 237 (2006) Google Scholar
  26. C.F. Steiner, Freshwater Biol. F 50, 105 (2005) Google Scholar
  27. F. Takens, Dynamical Systems and Turbulence (Springer Berlin, 1980), p. 366 Google Scholar
  28. M. Thiel, M. Romano, P. Read, J. Kurths, Chaos 14, 234 (2004) Google Scholar
  29. D. Tilman, P.B. Reich, J.M.H. Knops, Nature 14, 629 (2006) Google Scholar
  30. W. von Bloh, M.C. Romano, M. Thiel, Nonlinear Proc. Geophys. 12, 471 (2005) Google Scholar
  31. J.P. Zbilut, A. Giuliani, C.L. Webber Jr., Phys. Lett. A 267, 174 (2000) Google Scholar
  32. J.P. Zbilut, N. Thomasson, C.L. Webber Jr., Med. Eng. Phys. 24, 53 (2002) Google Scholar

Copyright information

© EDP Sciences and Springer 2008

Authors and Affiliations

  1. 1.Department of Geography, University of MontrealComplex Systems LaboratoryMontrealCanada
  2. 2.Applied Mathematics and Industrial Engineering, École Polytechnique de MontréalQCCanada

Personalised recommendations