Advertisement

The European Physical Journal Special Topics

, Volume 164, Issue 1, pp 105–115 | Cite as

Measuring volatility in the Nordic spot electricity market using Recurrence Quantification Analysis

  • F. StrozziEmail author
  • E. Gutiérrez
  • C. Noè
  • T. Rossi
  • M. Serati
  • J.M. Zaldívar
Article

Abstract

In this work, we have applied Recurrence Quantification Analysis (RQA)to data sets taken from the Nordic spot electricity market. Our main interest was in trying to correlate their volatility with variables obtained from the quantification of recurrence plots (RP). For this reason we have based our analysis on known historical events: the evolution of the Nord Pool market and climatic factors, i.e. dry and wet years, and we have compared several dispersion measures with RQA measures in correspondence of these events. The analysis suggests that two RQA measures: DET and LAM can be used as a measure of the inverse of the volatility. The main advantage of using DET and LAM is that these measures provide also information about the underlying dynamics. This fact is shown using shuffled and linear Gaussian surrogates of the real time series.

Keywords

Volatility European Physical Journal Special Topic Electricity Price Dispersion Measure Original Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.N. Mantegna, H.E Stanley, An Introduction to Econophysics (Cambridge University Press, Cambridge, 2000) Google Scholar
  2. A.S. Soofi, L. Cao (eds.), Modelling and Forecasting Financial Data: Techniques of Nonlinear Dynamics (Kluwer Academic Publishers, Norwell, 2002) Google Scholar
  3. M.M. Dacorogna, R. Gençay, U. Müller, R.B. Olsen, O.V. Pictet, An Introduction to High-Frequency Finance (Academic Press, San Diego, 2001) Google Scholar
  4. R. Weron, B. Przybylowicz, Physica A 283, 462 (2000) Google Scholar
  5. I. Simonsen, Physica A 322, 597 (2003) Google Scholar
  6. M. Bask, T. Liu, A. Widerberg, Physica A 376, 565 (2007) Google Scholar
  7. I. Simonsen, Physica A 355, 10 (2005) Google Scholar
  8. A.N. Shiryaev, Essential of Stochastic Finance (World Scientific Publishing, 1999) Google Scholar
  9. F. Strozzi, J.M. Zaldívar, J.P. Zbilut, Physica A 312, 520 (2002) Google Scholar
  10. F. Strozzi, J.M. Zaldívar, J.P. Zbilut, Physica A 376, 487 (2007) Google Scholar
  11. C.L. Webber, J.P. Zbilut, J. Appl. Phys. 76, 965 (1994) Google Scholar
  12. J.P. Eckmann, J.O. Kamphorst, D. Ruelle, Europhys. Lett. 4, 973 (1987) Google Scholar
  13. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007) Google Scholar
  14. H. Kantz, T. Shreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997) Google Scholar
  15. T. Kristiansen, Energy Policy 35, 307 (2007) Google Scholar
  16. N. Haldrup, M.Ø. Nielsen, J. Econ. 135, 349 (2006) Google Scholar
  17. R. Weron, M. Bierbrauer, S. Truck, Physica A 336, 39 (2004) Google Scholar
  18. S.D.H. Hsu, B.M. Murray, Physica A 380, 366 (2007) Google Scholar
  19. A. Figueiredo, I. Gleria, R. Matsushita, S. Da Silva, Physica A 346, 484 (2005) Google Scholar
  20. N. Packard, J. Crutchfield, D. Farmer, R. Shaw, Phys. Rev. Lett. 45, 712 (1981) Google Scholar
  21. F. Takens, Dynamical Systems and Turbulence, Lect. Notes Math., Vol. 898, edited by A. Rand, L.S. Young (Springer, Berlin, 1981), p. 366 Google Scholar
  22. A. Fraser, H. Swinney, Phys. Rev. A 33, 1134 (1986) Google Scholar
  23. L. Cao, Physica D 110, 43 (1997) Google Scholar
  24. J.P. Zbilut, C.L. Webber, Phys. Lett. A 171, 199 (1992) Google Scholar

Copyright information

© EDP Sciences and Springer 2008

Authors and Affiliations

  • F. Strozzi
    • 1
    Email author
  • E. Gutiérrez
    • 2
  • C. Noè
    • 1
  • T. Rossi
    • 1
  • M. Serati
    • 1
  • J.M. Zaldívar
    • 2
  1. 1.Università Carlo CattaneoCastellanzaItaly
  2. 2.Joint Research Centre, European CommissionIspraItaly

Personalised recommendations