The European Physical Journal Special Topics

, Volume 163, Issue 1, pp 315–332 | Cite as

5D optics for atomic clocks and gravito-inertial sensors

  • Ch. J. Bordé


A new framework is proposed to compare and unify photon and atomoptics, which rests on the quantization of proper time. A common waveequation written in five dimensions reduces both cases to 5D-optics ofmassless particles. The ordinary methods of optics (eikonal equation, Kirchhoff integral, Lagrange invariant, Fermat principle, symplectic algebraand ABCD matrices,...) are used to solve this equation in practical cases.The various phase shift cancellations, which occur in atom interferometers, and the quantum Langevin twin paradox for atoms, are then easily explained.A general phase-shift formula for interferometers is derived in fivedimensions, which applies to clocks as well as to gravito-inertial sensors.The application of this formula is illustrated in the case of atomicfountain clocks.


Wave Packet European Physical Journal Special Topic Gravitational Wave Beam Splitter Proper Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ch.J. Bordé, Metrologia 39, 435 (2002)Google Scholar
  2. Atom Interferometry, edited by P. Berman (Academic Press, 1997)Google Scholar
  3. Ch.J. Bordé, Propagation of Laser Beams and of Atomic Systems, Les Houches Lectures, Session LIII, 1990, Fundamental Systems in Quantum Optics, edited by J. Dalibard, J.-M. Raimond, J. Zinn-Justin (Elsevier Science Publishers, 1991), p. 287Google Scholar
  4. Ch.J. Bordé, Phys. Lett. A 140, 10 (1989)Google Scholar
  5. U. Sterr, et al., Atom Interferometry Based on Separated Light Fields, in Borde1Google Scholar
  6. Ch.J. Bordé, Atomic Interferometry and Laser Spectroscopy, Laser Spectroscopy X (World Scientific, 1991), p. 239Google Scholar
  7. Ch.J. Bordé, A. Karasiewicz, Ph. Tourrenc, Int. J. Mod. Phys. D 3, 157 (1994)Google Scholar
  8. Ch.J. Bordé, J.-C. Houard, A. Karasiewicz, Gyros, Clocks and Interferometers: Testing Relativistic Gravity in Space, edited by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl (Springer-Verlag, 2001), p. 403 [gr-qc/0008033]Google Scholar
  9. Ch.J. Bordé, Matter-Wave Interferometers: a Synthetic Approach, in Borde1Google Scholar
  10. N.D. Birrel, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, 1984)Google Scholar
  11. G. Barton, Elements of Green’s Functions and Propagation (Oxford Science Publications, 1989)Google Scholar
  12. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon, 1975)Google Scholar
  13. Ch.J. Bordé, Phil. Trans. Roy. Soc., 363, 2177 (2005)Google Scholar
  14. H. Feshbach, F. Villars, Rev. Mod. Phys. 30, 24 (1958)Google Scholar
  15. Ch.J. Bordé, Theoretical Tools for Atom Optics and Interferometry, C. R. Acad. Sci. Paris, Série IV (2001), p. 509Google Scholar
  16. Ch.J. Bordé, M. Weitz, T.W. Hänsch, Laser Spectroscopy, edited by L. Bloomfield, T. Gallagher, D. Larson (American Institute of Physics, 1994), p. 76Google Scholar
  17. M. Born, E. Wolf, Principles of Optics (Pergamon Press, 1989)Google Scholar
  18. Ch. Antoine, Ch.J. Bordé, Phys. Lett. A 306, 277 (2003)Google Scholar
  19. Ch. Antoine, Ch.J. Bordé, J. Opt. B: Quantum Semiclass. Opt. 5, S199 (2003)Google Scholar
  20. Ch.J. Bordé, Gen. Relat. Grav. 36, 475 (2004)Google Scholar
  21. F. Impens, Ch.J. Bordé, Phys. Rev. (submitted) [arXiv:0709.3381]Google Scholar
  22. F. Impens, Ch.J. Bordé (to be published)Google Scholar

Copyright information

© EDP Sciences and Springer 2008

Authors and Affiliations

  • Ch. J. Bordé
    • 1
    • 2
  1. 1.Laboratoire de Physique des Lasers, CNRS UMR 7538, Université Paris-NordVilletaneuseFrance
  2. 2.SYRTE, CNRS UMR 8630ParisFrance

Personalised recommendations