Molecular dynamics of fluids and droplets in patterned nanochannels

  • M. CieplakEmail author


Molecular dynamics studies of chain molecule fluids in nanochannels reveal new kinds of stationary flows when the walls of the channel are patterned chemically. In the single-fluid case, the patterning is shown to give rise to spatial switching between Poiseuille-like and plug-flow behaviours. In the two-fluid case, such that the two immiscible fluids wet different patches of a chemically patterned channel, the velocity field of the individual components is modulated in a way that is phase shifted relative to the single-fluid case. When the channel is homogeneous and wetting to one fluid component but non-wetting to the other then the resulting coating of the channel walls provides dissipation and thus stabilises flow of the other component. Wettability and geometrical patterning of substrates gives rise to a lotus-like effect in a rolling motion of nanodroplets along the substrate.


European Physical Journal Special Topic Slip Length Chain Molecule Geometrical Patterning Chemical Patterning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005) Google Scholar
  2. J. Atencia, D.J. Beebe, Nature 437, 648 (2005) Google Scholar
  3. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004) Google Scholar
  4. G.M. Whitesides, A.D. Stroock, Phys. Today 54, 42 (2001) Google Scholar
  5. T.P. Russell, Science 297, 964 (2002) Google Scholar
  6. R. Austin, Nat. Nanotechnol. 2, 79 (2007) Google Scholar
  7. M. Whitby, N. Quirke, Nat. Nanotechnol.2, 87 (2007) Google Scholar
  8. A. Lafuma, D. Quere, Nat. Mat. 2, 457 (2003) Google Scholar
  9. J.C. Maxwell, Phil. Trans. R. Soc. London Ser. A 170, 231 (1879) Google Scholar
  10. M. Cieplak, J. Koplik, J.R. Banavar, Phys. Rev. Lett. 86, 803 (2001) Google Scholar
  11. M. Cieplak, J. Koplik, J.R. Banavar, Phys. A 274, 281 (1999); Phys. A 287, 153 (2000) Google Scholar
  12. S.D. Gillmor, A.J. Thiel, T.C. Strother, L.M. Smith, M.G. Lagally, Langmuir 16, 7223 (2000) Google Scholar
  13. A.A. Darhuber, S.M. Troian, J.M. Davis, S.M. Miller, J. Appl. Phys. 88, 5119 (2000) Google Scholar
  14. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997) Google Scholar
  15. A. Marmur, Langmuir 20, 3517 (2004) Google Scholar
  16. R. Blossey, Nat. Mat. 2, 301 (2003) Google Scholar
  17. M. Cieplak, J. Koplik, J.R. Banavar, Phys. Rev. Lett. 96, 114502 (2006) Google Scholar
  18. W.J. Ma, J.R. Banavar, J. Koplik, J. Chem. Phys. 97, 485 (1992) Google Scholar
  19. P.A. Thompson, M.O. Robbins, Phys. Rev. A 41, 6830 (1990) Google Scholar
  20. M. Kroeger, W. Loose, S. Hess, J. Rheol. 37, 1057 (1993) Google Scholar
  21. J. Koplik, J.R. Banavar, Annu. Rev. Fluid. Mech. 27, 257 (1995) Google Scholar
  22. T. Auletta, B. Dordi, A. Mulder, et al., Angew. Chem. Int. Ed. 43, 369 (2004) Google Scholar
  23. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987) Google Scholar
  24. M. Cieplak, J.R. Banavar, J. Chem. Phys. 128, 104709 (2008) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Physics, Polish Academy of SciencesWarsawPoland

Personalised recommendations