Advertisement

The European Physical Journal Special Topics

, Volume 159, Issue 1, pp 135–141 | Cite as

Kinetic description of quantum Brownian motion

  • B. VacchiniEmail author
  • F. Petruccione
Article
  • 60 Downloads

Abstract.

We stress the relevance of the two features of translational invariance and atomic nature of the gas in the quantum description of the motion of a massive test particle in a gas, corresponding to the original picture of Einstein used in the characterization of Brownian motion. The master equation describing the reduced dynamics of the test particle is of Lindblad form and complies with the requirement of covariance under translations.

Keywords

Brownian Motion European Physical Journal Special Topic Master Equation Test Particle Translational Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007) Google Scholar
  2. F. Petruccione, B. Vacchini, Phys. Rev. E 71, 046134 (2005) Google Scholar
  3. S. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1, Nuclear Scattering (Clarendon Press, Oxford, UK, 1984) Google Scholar
  4. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003) Google Scholar
  5. B. Vacchini, Phys. Rev. Lett. 84, 1374 (2000) Google Scholar
  6. B. Vacchini, Phys. Rev. E 63, 066115 (2001) Google Scholar
  7. B. Vacchini, J. Math. Phys. 42, 4291 (2001) Google Scholar
  8. K. Hornberger, Phys. Rev. Lett. 97, 060601 (2006) Google Scholar
  9. K. Hornberger, B. Vacchini, Phys. Rev. A (2008) [arXiv:quant-ph/0711.3109] (to appear) Google Scholar
  10. A.S. Holevo, Rep. Math. Phys. 32, 211 (1993) Google Scholar
  11. A.S. Holevo, Rep. Math. Phys. 33, 95 (1993) Google Scholar
  12. G. Lindblad, Comm. Math. Phys. 48, 119 (1976) Google Scholar
  13. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976) Google Scholar
  14. B. Vacchini, Int. J. Theor. Phys. 44, 1011 (2005) Google Scholar
  15. W. Feller, An Introduction to Probability Theory and its Applications, Vol. II (John Wiley & Sons Inc., New York, 1971) Google Scholar
  16. L. Van Hove, Phys. Rev. 95, 249 (1954) Google Scholar
  17. F. Schwabl, Advanced Quantum Mechanics, 2nd edn. (Springer, New York, 2003) Google Scholar
  18. C.S.W. Chang, G.E. Uhlenbeck, The Kinetic Theory of Gases, in Studies in Statistical Mechanics, edited by J.D. Boer, Vol. 5 (North-Holland, Amsterdam, 1970) Google Scholar
  19. G. Lindblad, Rep. Mat. Phys. 10, 393 (1976) Google Scholar
  20. A. Sandulescu, H. Scutaru, Ann. Phys. 173, 277 (1987) Google Scholar
  21. L. Diósi, Europhys. Lett. 30, 63 (1995) Google Scholar
  22. R. Alicki, Open Syst. Inf. Dyn. 11, 53 (2004) Google Scholar
  23. B. Vacchini, K. Hornberger, Eur. Phys. J. 151, 59 (2007) Google Scholar
  24. B. Vacchini, Phys. Rev. E 66, 027107 (2002) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dipartimento di Fisica dell'Università di Milano and INFNMilanItaly
  2. 2.School of Physics, Quantum Research Group, University of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations