Announcing single photons from imperfect sources by means of “interaction-free" measurements

  • T. Konrad
  • A. Scherer
  • M. Nock
  • J. Audretsch


Interaction-free measurements can indicate the presence of photo-sensitive objects and even image the objects without damaging them. Can they also be used to indicate the presence of a single photon without absorbing it? We address this question in the context of improving the efficiency of single-photon sources. In particular, we interpret a recently proposed method to announce single photons based on two-photon absorption [Konrad et al., Phys. Rev. A 73, 032327 (2006)] in terms of "interaction-free" measurements.


Single Photon European Physical Journal Special Topic Destructive Interference Probability Amplitude Zehnder Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R.J. Hughes, J.E. Nordholt, D. Derkacs, C.G. Peterson, New J. Phys. 4 (2002) Google Scholar
  2. K.J. Gordon, R.J. Collins, P.D. Townsend, S.D. Cova, Proc. SPIE (2005) Google Scholar
  3. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Nature 421, 509 (2003) Google Scholar
  4. C.H. Bennett, G. Brassard, in Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing (Bangalore, India) (New York: IEEE, 1984) Google Scholar
  5. C.H. Bennett, G. Brassard, A. Ekert, Sci. Am. 267, 50 (1992) Google Scholar
  6. E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001) Google Scholar
  7. T.B. Pittman, B.C. Jacobs, J.D. Franson, Opt. Commun. 246, 545 (2004) Google Scholar
  8. W.E. Moerner, New J. Phys. 6, 88 (2004) Google Scholar
  9. D.W. Berry, S. Scheel, B.C. Sanders, P.L. Knight, Phys. Rev. A 69, 031806(R) (2004) Google Scholar
  10. D.W. Berry, S. Scheel, C.R. Myers, B.C. Sanders, P.L. Knight, R. Laflamme, New J. Phys. 6, 93 (2004) Google Scholar
  11. D.W. Berry, A.I. Lvovsky, B.C. Sanders, Opt. Lett. 31, 107 (2006) Google Scholar
  12. T. Konrad, A. Scherer, M. Nock, J. Audretsch, Phys. Rev. A 73, 032327 (2006) Google Scholar
  13. T. Konrad, M. Nock, A. Scherer, J. Audretsch, Phys. Rev. A 74, 032331 (2006) Google Scholar
  14. A.C. Elitzur, L. Vaidman, Found. Phys. 23, 987 (1993) Google Scholar
  15. L. Vaidman, Found. Phys. 33, 491 (2003) Google Scholar
  16. P.G. Kwiat, Phys. Scr. 76, 115 (1998) Google Scholar
  17. R.H. Dicke, Am. J. Phys. 49, 925 (1981) Google Scholar
  18. P. Kwiat, H. Weinfurter, T. Herzog, M. Kasevich, A. Zeilinger, Phys. Rev. Lett. 74, 4763 (1995) Google Scholar
  19. J. Audretsch, Entangled Systems: New Directions in Theoretical Quantum Physics (Wiley-VCH Verlag, Weinheim, 2007), Chap. 3 Google Scholar
  20. J.D. Franson, B.C. Jacobs, T.B. Pittman, Phys. Rev. A 70, 062302 (2004) Google Scholar
  21. J.D. Franson, B.C. Jacobs, T.B. Pittman, J. Opt. Soc. Am. B 24, 209 (2007) Google Scholar
  22. B.C. Jacobs, T.B. Pittman, J.D. Franson, Phys. Rev. A 74, 010303(R) (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • T. Konrad
    • 1
  • A. Scherer
    • 2
  • M. Nock
    • 1
  • J. Audretsch
    • 2
  1. 1.School of Physics, University of KwaZulu-NatalDurbanSouth Africa
  2. 2.Fachbereich Physik, Universität KonstanzKonstanzGermany

Personalised recommendations