Test of quantum mechanics by neutron interferometry

  • H. Rauch


Interferometry with massive elementary particles combines particle and wave features in a direct way. In this respect, neutrons are proper tools for testing quantum mechanics because they are massive, they couple to electromagnetic fields due to their magnetic moment, and they are subject to all basic interactions, and they are sensitive to topological effects, as well. They play a pionieering role in the development of interferometry with even heavier objects, like atoms, molecules and clusters. Deterministic and stochastic partial absorption experiments can be described by Bell-type inequalities. Recent neutron interferometry experiments based on postselection methods renewed the discussion about quantum nonlocality and the quantum measuring process. It has been shown that interference phenomena can be revived even when the overall interference pattern has lost its contrast. This indicates persisting coupling in phase space even in cases of spatially separated Schrödinger cat-like situations. These states are extremely fragile and sensitive to any kind of fluctuations or other decoherence processes. More complete quantum experiments also show that a complete retrieval of quantum states behind an interaction region becomes impossible in principle. The transition from a quantum world to a classical one is still an open question and will be tackled by means of dedicated decoherence experiments. Recent measurements deal with quantum contextuality and quantum state reconstruction. The observed results agree with quantum mechanical laws and may stimulate further discussions about their interpretations.


European Physical Journal Special Topic Interference Pattern Beam Path Coherent Beam Fringe Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Rauch, W. Treimer, U. Bonse, Phys. Lett. A 47, 369 (1974) Google Scholar
  2. H. Rauch, S.A. Werner (eds.), Neutron Interferometry (Clarendon Press, Oxford, 2000) Google Scholar
  3. H. Rauch, D. Petrascheck, Neutron Diffraction, edited by H. Dachs, Chap. 9 (Springer Verlag, Berlin, 1978) Google Scholar
  4. V.F. Sears, Neutron Optics (Oxford University Press, Oxford, 1989) Google Scholar
  5. R.J. Glauber, Phys. Rev. 130, 2529; Phys. Rev. 131, 2766 (1963) Google Scholar
  6. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995) Google Scholar
  7. H. Rauch, H. Wölwitsch, H. Kaiser, R. Clothier, S.A. Werner, Phys. Rev. A 53, 902 (1996) Google Scholar
  8. R. Colella, A.W. Overhauser, S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975) Google Scholar
  9. S.A. Werner, J.L. Staudenmann, R. Colella, Phys. Rev. Lett. 42, 1103 (1979) Google Scholar
  10. A.G. Klein, G.I. Opat, A. Cimmino, A. Zeilinger, W. Treimer, R. Gähler, Phys. Rev. Lett. 46, 1551 (1981) Google Scholar
  11. H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, U. Bonse, Phys. Lett. A 54, 425 (1975) Google Scholar
  12. S.A. Werner, R. Colella, A.W. Overhauser, C.F. Eagen, Phys. Rev. Lett. 35, 1053 (1975) Google Scholar
  13. J. Summhammer, G. Badurek, H. Rauch, U. Kischko, A. Zeilinger, Phys. Rev. A 27, 2523 (1983) Google Scholar
  14. G. Badurek, H. Rauch, J. Summhammer, Phys. Rev. Lett. 51, 1015 (1983) Google Scholar
  15. G. Badurek, H. Rauch, D. Tuppinger, Phys. Rev. A 34, 2600 (1986) Google Scholar
  16. J. Summhammer, K.A. Hamacher, H. Kaiser, H. Weinfurter, D.L. Jacobson, S.A. Werner, Phys. Rev. Lett. 75, 3206 (1995) Google Scholar
  17. J. Summhammer, H. Rauch, D. Tuppinger, Phys. Rev. A 36, 4447 (1987) Google Scholar
  18. H. Rauch, J. Summhammer, M. Zawisky, E. Jericha, Phys. Rev. A 42, 3726 (1990) Google Scholar
  19. M. Namiki, S. Pascazio, Phys. Lett. A 147, 430 (1990) Google Scholar
  20. J.S. Bell, Physics 1, 195 (1965) Google Scholar
  21. H. Rauch, J. Summhammer, Phys. Rev. 46, 7284 (1992) Google Scholar
  22. W.K. Wooters, W.H. Zurek, Phys. Rev. D 19, 473 (1979) Google Scholar
  23. B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996) Google Scholar
  24. M. Zawisky, M. Baron, R. Loidl, Phys. Rev. A 66, 063608 (2002) Google Scholar
  25. M. Zawisky, Found. Phys. Lett. 17, 561 (2004) Google Scholar
  26. M. Suda, H. Rauch, M. Peev, J. Opt. B: Quantum Semiclass. Opt. 6, 345 (2004) Google Scholar
  27. M. Baron, Messung von Quantenzuständen im Neutroneninterferometer, Doctoral Thesis, TU Wien, 2005 Google Scholar
  28. J. Summhammer, K.A. Hamacher, H. Kaiser, H. Weinfurter, D.L. Jacobson, S.A. Werner, Phys. Rev. Lett. 75, 3206 (1995) Google Scholar
  29. Y. Hasegawa, J. Klepp, S. Filipp, R. Loidl (in preparation) Google Scholar
  30. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Nature 427, 711 (2004) Google Scholar
  31. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935) Google Scholar
  32. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982) Google Scholar
  33. Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 61, 50 (1988) Google Scholar
  34. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998) Google Scholar
  35. S. Basu, S. Bandyopadhyay, G. Kar, D. Home, Phys. Lett. A 279, 281 (2001) Google Scholar
  36. Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, H. Rauch, Nature 425, 46 (2003) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • H. Rauch
    • 1
  1. 1.Atominstitut der Österreichischen UniversitätenWienAustria

Personalised recommendations