Advertisement

Controllable 3D atomic Brownian motor in optical lattices

  • C. M. DionEmail author
  • P. Sjölund
  • S. J.H. Petra
  • S. Jonsell
  • M. Nylén
  • L. Sanchez-Palencia
  • A. Kastberg
Article

Abstract.

We study a Brownian motor, based on cold atoms in optical lattices, where atomic motion can be induced in a controlled manner in an arbitrary direction, by rectification of isotropic random fluctuations. In contrast with ratchet mechanisms, our Brownian motor operates in a potential that is spatially and temporally symmetric, in apparent contradiction to the Curie principle. Simulations, based on the Fokker-Planck equation, allow us to gain knowledge on the qualitative behaviour of our Brownian motor. Studies of Brownian motors, and in particular ones with unique control properties, are of fundamental interest because of the role they play in protein motors and their potential applications in nanotechnology. In particular, our system opens the way to the study of quantum Brownian motors.

Keywords

European Physical Journal Special Topic Drift Velocity Optical Lattice Brownian Particle Cold Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. (Leipzig) 14, 51 (2005) Google Scholar
  2. P. Reimann, Phys. Rep. 361, 57 (2002) Google Scholar
  3. P. Curie, J. Phys. (France) 3, 393 (1894) Google Scholar
  4. R.P. Feynman, R.B. Leighton, M. Sands, in The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1963), Chap. 46 Google Scholar
  5. M. von Smoluchowski, Phys. Z. 13, 1069 (1912) Google Scholar
  6. L. Sanchez-Palencia, Phys. Rev. E 70, 011102 (2004) Google Scholar
  7. G. Grynberg, C. Robilliard, Phys. Rep. 355, 335 (2001) Google Scholar
  8. P.S. Jessen, I.H. Deutsch, Adv. At. Mol. Opt. Phys. 37, 95 (1996) Google Scholar
  9. G. Grynberg, C. Triché, L. Guidoni, P.M. Visser, Europhys. Lett. 51, 506 (2000) Google Scholar
  10. P.M. Visser, G. Grynberg, Eur. Phys. J. D 12, 403 (2000) Google Scholar
  11. P. Horak, J.-Y. Courtois, G. Grynberg, Phys. Rev. A 58, 3953 (1998) Google Scholar
  12. G. Grynberg, P. Horak, C. Mennerat-Robilliard, Europhys. Lett. 49, 424 (2000) Google Scholar
  13. L. Guidoni, C. Triché, P. Verkerk, G. Grynberg, Phys. Rev. Lett. 79, 3363 (1997) Google Scholar
  14. L. Guidoni, B. Dépret, A. di Stefano, P. Verkerk, Phys. Rev. A 60, R4233 (1999) Google Scholar
  15. L. Sanchez-Palencia, F.-R. Carminati, M. Schiavoni, F. Renzoni, G. Grynberg, Phys. Rev. Lett. 88, 133903 (2002) Google Scholar
  16. M. Schiavoni, F.-R. Carminati, L. Sanchez-Palencia, F. Renzoni, G. Grynberg, Europhys. Lett. 59, 493 (2002) Google Scholar
  17. L. Sanchez-Palencia, G. Grynberg, Phys. Rev. A 68, 023404 (2003) Google Scholar
  18. C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J.-Y. Courtois, G. Grynberg, Phys. Rev. Lett. 82, 851 (1999) Google Scholar
  19. C. Robilliard, D. Lucas, G. Grynberg, Appl. Phys. A 75, 213 (2002) Google Scholar
  20. M. Schiavoni, L. Sanchez-Palencia, F. Renzoni, G. Grynberg, Phys. Rev. Lett. 90, 094101 (2003) Google Scholar
  21. P.H. Jones, M. Goonasekera, F. Renzoni, Phys. Rev. Lett. 93, 073904 (2004) Google Scholar
  22. R. Gommers, P. Douglas, S. Bergamini, M. Goonasekera, P.H. Jones, F. Renzoni, Phys. Rev. Lett. 94, 143001 (2005) Google Scholar
  23. R. Gommers, S. Bergamini, F. Renzoni, Phys. Rev. Lett. 95, 073003 (2005) Google Scholar
  24. P. Sjölund, S.J.H. Petra, C.M. Dion, S. Jonsell, M. Nylén, L. Sanchez-Palencia, A. Kastberg, Phys. Rev. Lett. 96, 190602 (2006) Google Scholar
  25. S. Chu, Rev. Mod. Phys. 70, 685 (1998) Google Scholar
  26. C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998) Google Scholar
  27. W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998) Google Scholar
  28. J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) Google Scholar
  29. L. Sanchez-Palencia, P. Horak, G. Grynberg, Eur. Phys. J. D 18, 353 (2002) Google Scholar
  30. H. Ellmann, J. Jersblad, A. Kastberg, Phys. Rev. Lett. 90, 053001 (2003) Google Scholar
  31. H. Ellmann, J. Jersblad, A. Kastberg, Eur. Phys. J. D 22, 355 (2003) Google Scholar
  32. S.J.H. Petra, P. Sjölund, A. Kastberg, J. Opt. A.: Pure Appl. Opt. 8, 381 (2006) Google Scholar
  33. P. Verkerk, D.R. Meacher, A.B. Coates, J.-Y. Courtois, S. Guibal, C. Salomon, G. Grynberg, Europhys. Lett. 26, 171 (1994) Google Scholar
  34. H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989) Google Scholar
  35. G. Lindblad, Commun. Math. Phys. 48, 119 (1976) Google Scholar
  36. P. Hänggi, G.-L. Ingold, Chaos 15, 026105 (2005) Google Scholar
  37. E. Lundh, M. Wallin, Phys. Rev. Lett. 94, 110603 (2005) Google Scholar
  38. E. Lundh, Phys. Rev. E 74, 016212 (2006) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • C. M. Dion
    • 1
    Email author
  • P. Sjölund
    • 1
  • S. J.H. Petra
    • 1
  • S. Jonsell
    • 1
  • M. Nylén
    • 1
  • L. Sanchez-Palencia
    • 2
  • A. Kastberg
    • 1
  1. 1.Department of PhysicsUmeå UniversityUmeåSweden
  2. 2.Laboratoire Charles Fabry de l'Institut d'Optique, CNRS, Univ. Paris-Sud, Campus PolytechniquePalaiseau CedexFrance

Personalised recommendations