Advertisement

Micropositioning using shape memory alloy actuators

  • E. Asua
  • A. García-Arribas
  • V. Etxebarria
Article

Abstract.

Shape memory alloys (SMA) can be used to generate motion or force in electromechanical devices and micro-machines, although their accuracy is severely limited by their highly nonlinear and hysteretical stimulus-response characteristics. In this work we present some results regarding a nonlinear control method suitable for SMA-based positioning applications. In particular, we show how the hysteresis effects can be compensated using an inverse hysteresis model generated by a neural network, trained using experimental data. The control strategy, experimented on a laboratory SMA actuator, uses the inverse model inserted in a proportional-integral with antiwindup control loop. It is found that neural networks successfully improve the closed-loop response, leading to position accuracies close to a micrometer.

Keywords

Shape Memory Alloy European Physical Journal Special Topic Inverse Model Shape Memory Alloy Wire Shape Memory Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Pons, Emerging Actuator Technologies: A Micromechatronic Approach (John Wiley, New York, 2005) Google Scholar
  2. S. Majima, K. Kodama, T. Hasegawa, IEEE Trans. Control Syst. Technol. 9, 54 (2001) Google Scholar
  3. T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman, Engineering Aspects of Shape Memory alloys (Butterworth, Heinemann, London, 1990) Google Scholar
  4. R.C. Smith, Smart Material Systems: Model Development (SIAM Press, Philadelphia, 2005) Google Scholar
  5. G. Gang Tao, P.V. Kokotović, Adaptive Control of Systems with Actuator and Sensor Nonlinearities (John Wiley, New York, 1996) Google Scholar
  6. Dynalloy, INC. www.dynalloy.com Google Scholar
  7. K. Funahashi, Neural Netw. 2, 183 (1989) Google Scholar
  8. P.J. Antsakis, IEEE Control Syst. Mag. 10, 3 (1990) Google Scholar
  9. E. Asua, V. Etxebarria, A. García-Arribas, Eng. Appl. Artif. Intell. (in press) Google Scholar
  10. E. Asua, V. Etxebarria, A. García-Arribas, in Proceedings of IEEE Conference on Control Applications CCA2006 (Munich, Germany), pp. 3229–3234 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • E. Asua
    • 1
  • A. García-Arribas
    • 1
  • V. Etxebarria
    • 1
  1. 1.Departamento de Electricidad y ElectrónicaUniversidad del País VascoBilbaoSpain

Personalised recommendations