Advertisement

A free energy model for magneto-mechanically coupled NiMnGa single crystals

  • P. Morrison
  • S. SeeleckeEmail author
  • B. Krevet
  • M. Kohl
Article

Abstract.

This paper presents a one-dimensional magneto-mechanical model for NiMnGa. Following a modeling approach developed by the authors for conventional shape memory behavior and ferroelectricity, a constitutive Helmholtz free energy landscape with strain and magnetization as order parameters is constructed for a representative meso-scale lattice element. The landscape includes three paraboloidal energy wells representing the two easy-axis and one hard-axis martensite variants distinguishable in the chosen coordinate system. The resulting stress- and magnetic-field-dependent Gibbs free energy expressions are then used within the theory of thermally activated processes to derive a series of phase-fraction evolution equations. The phase fractions subsequently determine the macroscopic strain and magnetization of a sample of NiMnGa by a standard averaging procedure. Results from the model are compared to experimental data and demonstrate the model's ability to reproduce constitutive behaviors of the material. Future work includes an extension to a full thermo-magneto-mechanical model accounting for the occurrence of austenite and inhomogeneity effects and configured to function within the tensile-stress regime.

Keywords

Martensite Shape Memory Shape Memory Alloy European Physical Journal Special Topic Crystal Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kohl, S. Hoffmann, Y. Liu, M. Ohtska, T. Takagi, J. Phys. IV (France) 112, 1185 (2003) Google Scholar
  2. M. Kohl, D. Brugger, M. Ohtska, T. Takagi, Sens. Actuators A: Phys. 114, 445 (2004) Google Scholar
  3. R.C. Smith, S. Seelecke, M. Dapino, Z. Ounaies, J. Mech. Phys. Solids 54, 46 (2006) Google Scholar
  4. R.C. Smith, S. Seelecke, Z. Ounaies, J. Smith, J. Intell. Mater. Syst. Struct. 14, 719 (2003) Google Scholar
  5. R.C. Smith, M. Dapino, S. Seelecke, J. Appl. Phys. 93, 458 (2003) Google Scholar
  6. S. Seelecke, Int. J. Non-Linear Mech. 37, 1363 (2002) Google Scholar
  7. F.J. Pérez-Reche, E. Vives, L. Mañosa, A. Planes, Phys. Rev. Lett. 87, 19 (2001) Google Scholar
  8. K. Otsuka, X. Ren, T. Takeda, Scr. Mater. 45, 145 (2001) Google Scholar
  9. T. Kakeshita, K. Kuroiwa, K. Shimizu, T. Ikeda, A. Yamagashi, M. Date, Mat. Trans. JIM 34, 423 (1993) Google Scholar
  10. P. Zhao, Ph.D. thesis, Maryland, 2006 Google Scholar
  11. Y. Ge, O. Heczko, O. Söderberg, S.-P. Hannula, Scr. Mater. 54, 2155 (2006) Google Scholar
  12. Y. Ge, O. Heczko, O. Söderberg, V.K. Lindroos, J. Appl. Phys. 96, 2159 (2004) Google Scholar
  13. B. Kiefer, D.C. Lagoudas, Philos. Mag. 85, 4289 (2005) Google Scholar
  14. R. Tickle, Ferromagnetic Shape Memory Materials, Ph.D. thesis, Univ. of Minnesota, 2000, p. 25 Google Scholar
  15. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 1996), p. 468 Google Scholar
  16. O. Heczko, J. Magn. Magn. Mater. 290-291, 846 (2005) Google Scholar
  17. S.-J. Kim, S. Seelecke, Int. J. Solids Struct. 44, 1196 (2007) Google Scholar
  18. L. Straka, O. Heczko, J. Magn. Magn. Mater. 290-291, 829 (2005) Google Scholar
  19. O. Heczko, L. Straka, J. Appl. Phys. 94, 7139 (2003) Google Scholar
  20. O. Heczko, V.A. L'vov, L. Straka, S.-P. Hannula, J. Magn. Magn. Mater. 302, 387 (2006) Google Scholar
  21. J. Tellinen, I. Suorsa, A. Jääskeläinen, I. Aaltio, K. Ullakko, 8th International Conference ACTUATOR 2002 (Germany, 2002) Google Scholar
  22. O. Heintze, S. Seelecke, Mater. Sci. Eng. A (2007) [doi:10.1016/j.mesa.2007.08.028] (in press) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Dept. of Mech. and Aerospace Engineering, North Carolina State UniversityRaleighUSA
  2. 2.Forschungszentrum Karlsruhe, Institute of Microstructure TechnologyKarlsruheGermany

Personalised recommendations