Advertisement

A fabrication technology for epitaxial Ni-Mn-Ga microactuators

  • F. Khelfaoui
  • M. Kohl
  • J. Buschbeck
  • O. Heczko
  • S. Fähler
  • L. Schultz
Article

Abstract.

This paper reports on the fabrication and characterization of epitaxial Ni-Mn-Ga microactuators. Ni-Mn-Ga films are grown on heated single-crystalline MgO substrates by DC magnetron sputtering. X-ray diffraction measurements demonstrate epitaxial growth of the films. At room temperature, the crystal structure is identified to be non-modulated (NM) tetragonal martensite. Electrical resistance measurements confirm that the films display the martensitic phase transformation well above the Curie temperature TC of 325 K. Orientation-dependent magnetization measurements are performed to determine magnetic film properties. Micromachining of the Ni-Mn-Ga films is performed on an alumina substrate covered by a temporary adhesive layer. A transfer bonding process is developed to finally integrate the micromachined Ni-Mn-Ga structures to a target substrate in order to obtain NiMnGa microactuators having freely movable microparts. Temperature-displacement characteristics demonstrate the actuation performance of epitaxial NiMnGa microactuators for the first time.

Keywords

Martensite European Physical Journal Special Topic Martensitic Phase Transformation Shape Memory Material Ferromagnetic Shape Memory Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley, T.A. Lograsso, Appl. Phys. Lett. 77, 886 (2000) Google Scholar
  2. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002) Google Scholar
  3. http://www.adaptamat.com Google Scholar
  4. M. Ohtsuka, K. Itakagi, Int. J. Appl. Electromagn. Mech. 12, 49 (2000) Google Scholar
  5. P.G. Tello, F.J. Castano, R.C. O'Handley, S.M. Allen, M. Esteve, F. Castano, A. Labarta, X. Battle, J. Appl. Phys. 91, 8234 (2002) Google Scholar
  6. H. Rumpf, J. Feydt, D. Levandovski, A. Ludwig, B. Winzek, E. Quandt, P. Zhao, M. Wuttig, SPIE Proc. Ser. 5053, 191 (2003) Google Scholar
  7. M. Kohl, V.A. Chernenko, M. Ohtsuka, K. Seemann, Mater. Sci. Eng. A 438-440, 940 (2006) Google Scholar
  8. A. Agarwal, M. Kohl, V.A. Chernenko, M. Ohtsuka, Proc. E-MRS 2005, Symp. C, Warsaw, Poland 85 (2005) Google Scholar
  9. M. Kohl, V.A. Chernenko, M. Ohtsuka, H. Reuter, T. Takagi, Mater. Res. Soc. Symp. Proc. 855E, W2.8.1-6 (2005) Google Scholar
  10. J.W. Dong, J.Q. Xie, J. Lu, C. Adelmann, C.J. Palmstrom, J. Cui, Q. Pan, T.W. Shield, R.D. James, S. McKernan, J. Appl. Phys. 95, 2593 (2004) Google Scholar
  11. V.A. Chernenko, E. Cesari, V.V. Khovailo, I.N. Vitenko, Scr. Metall. Mater. 33, 1239 (1995) Google Scholar
  12. V.A. Chernenko, M. Ohtsuka, M. Kohl, V.V. Khovailo, T. Takagi, Smart Mater. Struct. 4, 245 (2005) Google Scholar
  13. B. Krevet, M. Kohl, P. Morrison, S. Seelecke, Eur. Phys. J. Special Topics 158, 205 (2008) Google Scholar
  14. O. Heczko, J. Magn. Magn. Mater. 787, 290 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • F. Khelfaoui
    • 1
  • M. Kohl
    • 1
    • 2
  • J. Buschbeck
    • 3
  • O. Heczko
    • 3
  • S. Fähler
    • 3
  • L. Schultz
    • 3
  1. 1.University of KarlsruheEggenstein-LeopoldshafenGermany
  2. 2.Forschungszentrum Karlsruhe, IMT, Postfach 3640KarlsruheGermany
  3. 3.IFW Dresden, Institute for Metallic MaterialsDresdenGermany

Personalised recommendations