Advertisement

Rapidly solidified ferromagnetic shape memory alloys

  • C. M. Craciunescu
  • A. Ercuta
  • I. Mitelea
  • M. Valeanu
  • V. S. Teodorescu
  • N. Lupu
  • H. Chiriac
Article

Abstract.

Ferromagnetic shape memory alloys have been manufactured by various techniques involving rapid solidification. Bulk alloys have been obtained by extracting the melted alloy in especially designed copper molds; glass coated wires have been obtained by drawing the melt from glass recipients followed by water cooling and ribbons have been fabricated by melt-spinning. Microstructural observations show particular solidification aspects of fractured areas, while ferromagnetic behavior has been detected in glass coated wires obtained by rapid solidification. The martensitic microstructure was observed on Co-Ni-Ga rapid solidified bulk alloys and Fe-Pd ribbons. The memory effect was detected using a Vibran system that allows the detection of the phase transition for the ribbons and by visual observation for other specimens. The conclusions of the observations are related to the comparison between the ferromagnetic behaviors of shape memory alloys solidified using different techniques.

Keywords

Shape Memory Shape Memory Alloy European Physical Journal Special Topic Ferromagnetic Behavior Bulk Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.A. Chernenko, V.V. Kokorin, I.N. Vitenko, Smart Mater. Struct. 3, 80 (1994) Google Scholar
  2. T. Kubota, Y. Furuya, T. Okazaki, M. Munemi, J. Jpn. Inst. Metals 65, 827 (2001) Google Scholar
  3. J.W. Dong, L.C. Chen, C.J. Palmstrom, R.D. James, S. McKeman, Appl. Phys. Lett. 75, 1443 (1999) Google Scholar
  4. S. Inoue, K. Inoue, S. Fujita, K. Koterazawa, Mater. Trans. 44, 298 (2003) Google Scholar
  5. H. Chiriac, T.A. Ovari, Gh. Pop, F. Barariu, EU Pat. EP 0 870 308; Romanian Pat. RO 95–02277; US Patent 6,270,591 Google Scholar
  6. G.F. Taylor, Phys. Rev. 24, 655 (1924) Google Scholar
  7. T. Kubota, T. Okazaki, H. Kimura, T. Watanabe, M. Wuttig, Y. Furuya, Sci. Technol. Adv. Mater. 3, 201 (2002) Google Scholar
  8. T. Kanada, M. Enokizono, J. Magn. Mag. Mater. 196, 349 (1999) Google Scholar
  9. A.V. Torcunov, S.A. Baranov, V.S. Larin, J. Magn. Mag. Mater. 196-197, 835 (1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • C. M. Craciunescu
    • 1
  • A. Ercuta
    • 2
  • I. Mitelea
    • 1
  • M. Valeanu
    • 3
  • V. S. Teodorescu
    • 3
  • N. Lupu
    • 4
  • H. Chiriac
    • 4
  1. 1.“Politehnica” University of TimisoaraTimisoaraRomania
  2. 2.West University of TimisoaraTimisoaraRomania
  3. 3.National Institute of Research and Development for Technical PhysicsIasiRomania
  4. 4.National Institute of Materials PhysicsBucharest MagureleRomania

Personalised recommendations