Advertisement

Giant magnetostrain based on strong single ion anisotropy of rare earth materials

  • M. DoerrEmail author
  • S. Raasch
  • M. Rotter
  • M. Frontzek
  • D. C. Meyer
  • T. Leisegang
  • M. Zschintzsch
  • P. Svoboda
  • M. Loewenhaupt
Article
  • 49 Downloads

Abstract.

The volume, shape and microstructure of solids can be influenced by magnetic fields. Much effort is focused on magnetic shape memory (MSM) materials. Recently, the MSM effect has been discovered to occur also in the paramagnetic state, e.g. in RCu2 compounds (R = rare earth). RMSM materials distinguish themselves from conventional MSM materials by the new origin of the magnetoic anisotropy: the strong rare-earth single ion anisotropy. Due to the pseudo-hexagonal symmetry of RCu2, three orientational variants exists, each of them rotated by about 60 deg with respect to the others. Switching these variants by an external field results in a change of the macroscopic shape. The strain is in the order of one percent (= Giant MagnetoStrain). The variant's fraction remains unchanged when ramping down the field. The virgin state can be recovered by heating or by a perpendicularly directed field. We present temperature and field dependent measurements of magnetostrain and magentization at the model substance Tb0.5Dy0.5Cu2. The macroscopic characterization of the sample is complemented by a detailed microscopic analysis done by elastic neutron scattering. Although the GMS effect of RCu2 was worked out at single crystals, the principle of this magneto-mechanical coupling phenomenon is also useful for polycrystalline or microscaled applications. The existence of this structural irreversibility shows the potential to construct field controlled actuators or switches.

Keywords

European Physical Journal Special Topic Easy Axis CeCu Shape Memory Material Twin Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Sozinov, A.A. Lanska, N. Lanska, K. Ullako, Appl. Phys. Lett. 80, 1746 (2002) Google Scholar
  2. O. Heczko, L. Straka, J. Appl. Phys. 94, 7139 (2003) Google Scholar
  3. A.N. Lavrov, A. Komiya, Y. Ando, Nature 418, 385 (2002) Google Scholar
  4. Y. Hashimoto, A. Yamagishi, T. Takeuchi, M. Date, J. Magn. Magn. Mat. 90-91, 49 (1990) Google Scholar
  5. S. Kramp, M. Doerr, M. Rotter, M. Loewenhaupt, R. van de Kamp, Euro. Phys. B 18, 559 (2000) Google Scholar
  6. K. Sugiyama, T. Yamamoto, N. Nakamura, K. Kindo, R. Settai, Y. Onuki, J. Magn. Magn. Mat. 262, 389 (2003) Google Scholar
  7. S. Raasch, M. Doerr, A. Kreyssig, M. Rotter, J.-U. Hoffmann, M. Loewenhaupt, Phys. Rev. B 73, 64402 (2006) Google Scholar
  8. M. Loewenhaupt, M. Doerr, M. Rotter, T. Reif, A. Schneidewind, J. Phys. 30, 754 (2000) Google Scholar
  9. M. Rotter, E. Gratz, H. Müller, M. Doerr, M. Loewenhaupt, Rev. Sci. Instrum. 69, 2742 (1998) Google Scholar
  10. M. Doerr, M. Rotter, M. Loewenhaupt, T. Reif, P. Svoboda, Physica B 284-288, 1331 (2000) Google Scholar
  11. A.R. Storm, K.E. Benson, Acta Cryst. 16, 701 (1963) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Doerr
    • 1
    Email author
  • S. Raasch
    • 1
  • M. Rotter
    • 2
  • M. Frontzek
    • 1
  • D. C. Meyer
    • 3
  • T. Leisegang
    • 3
  • M. Zschintzsch
    • 3
  • P. Svoboda
    • 4
  • M. Loewenhaupt
    • 1
  1. 1.Technische Universität Dresden, Institut für FestkörperphysikDresdenGermany
  2. 2.Universität Wien, Institut für Physikalische ChemieWienAustria
  3. 3.Technische Universität Dresden, Institut für StrukturphysikDresdenGermany
  4. 4.Charles University PraguePrague 2Czech Republic

Personalised recommendations