Advertisement

Theory of stripe domains in magnetic shape memory alloys

  • N. S. KiselevEmail author
  • I. E. Dragunov
  • A. T. Onisan
  • U. K. Rößler
  • A. N. Bogdanov
Article

Abstract.

The evolution of multivariant patterns in thin plates of magnetic shape memory materials with an applied magnetic field was studied theoretically. A geometrical domain-model is considered composed of straight stripe-like martensite variants with constant internal magnetization (high anisotropy limit) and magnetic domain wall orientation fixed by the twin boundaries. Through integral transforms of the demagnetization energy, the micromagnetic energy is cast into a form convenient for direct numerical evaluation and analytical calculations. The equilibrium geometrical parameters of multivariant patterns with straight and oblique twin boundaries have been derived as functions of the applied field and the material parameters of a plate. It is shown that the oblique multivariant states exist only in plates with thicknesses L larger than a certain critical value L0. In samples with L<L0 a magnetic-field-driven transformation occurs directly between single variant states.

Keywords

Domain Wall European Physical Journal Special Topic Martensite Variant Stripe Domain Multivariant Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Q. Pan, R.D. James, J. Appl. Phys. 87, 4702 (2000) Google Scholar
  2. O. Heczko, K. Jurek, K. Ullakko, J. Magn. Magn. Mater. 226, 996 (2001) Google Scholar
  3. A.N. Bogdanov, A. DeSimone, S. Müller, U.K. Rößler, J. Magn. Magn. Mat. 261, 204 (2003) Google Scholar
  4. A. Hubert, R. Schäfer, Magnetic Domains (Springer-Verlag, Berlin, 1998) Google Scholar
  5. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Appl. Phys. Lett. 82, 3695 (2003) Google Scholar
  6. Y. Ge, O. Heczko, O. Söderberg, V.K. Lindroos, J. Appl. Phys. 96, 2159 (2004) Google Scholar
  7. V.A. Chernenko, R. Lopez Anton, M. Kohl, J.M. Baradiaran, M. Ohtsuka, I. Orue, S. Besseghini, Acta Mater. 54, 5461 (2006) Google Scholar
  8. Y.W. Lai, N. Scheerbaum, D. Hinz, O. Gutleisch, R. Schäfer, L. Schultz, J. McCord, Appl. Phys. Lett. 90, 192504 (2007) Google Scholar
  9. A.N. Bogdanov, D.A. Yablonskii, Fiz. Tverd. Tela 22, 680 (1980); Sov. Phys. Solid State 22, 399 (1980) Google Scholar
  10. A.N. Bogdanov, U.K. Rößler (2006) [cond-mat/0606671] Google Scholar
  11. N.S. Kiselev, I.E. Dragunov, V. Neu, U.K. Rößler, A.N. Bogdanov (to be published) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • N. S. Kiselev
    • 1
    • 2
    Email author
  • I. E. Dragunov
    • 2
  • A. T. Onisan
    • 1
  • U. K. Rößler
    • 1
  • A. N. Bogdanov
    • 1
  1. 1.IFW Dresden, Postfach 270116DresdenGermany
  2. 2.Donetsk Institute for Physics and TechnologyDonetskUkraine

Personalised recommendations