Training, constraints, and high-cycle magneto-mechanical properties of Ni-Mn-Ga magnetic shape-memory alloys

  • M. Chmielus
  • V. A. Chernenko
  • W. B. Knowlton
  • G. Kostorz
  • P. Müllner


Magneto-mechanical experiments with a rotating magnetic field of 0.97 T were performed with a Ni-Mn-Ga single crystal. Periodic strains exceeding 1% were recorded over a hundred million magneto-mechanical cycles. The twin microstructure of the cycled crystal was characterized using atomic force microscopy (AFM) and magnetic force microscopy (MFM). In the center of the sample, no twin boundaries were found. At the sample edges, the microstructure shows a dense twin pattern. The results are compared with previous experiments of differently trained crystals. It is useful to distinguish between “ineffective training”, which results in a nearly self-accommodated martensite, and “effective training”, which results in a nearly single-variant crystal. The evolution of twin structure is discussed in terms of training, magneto-mechanical cycling, and extrinsic constraints imposed by the experimental setting. It is concluded that the response of a magnetic shape memory alloy to an alternating excitation depends strongly on the initial twin microstructure established through training. In particular, ineffective training results in a twin microstructure which can adapt to extrinsic constraints resulting in continued large periodic magnetic-field-induced deformation. In contrast, the twin microstructure of an effectively trained crystal can not adapt to extrinsic constraints resulting in early failure by fracture.


European Physical Journal Special Topic Twin Boundary Magnetic Force Microscopy Twin Structure Shape Memory Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin, J. Appl. Phys. 69, 1966 (1996) Google Scholar
  2. R.D. James, M. Wuttig, Philos. Mag. A 77, 1273 (1998) Google Scholar
  3. S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley, T.A. Lograsso, Appl. Phys. Lett. 77, 886 (2000) Google Scholar
  4. A. Likhachev, K. Ullakko, J. Magn. Magn. Mater. 226-230, 1531 (2001) Google Scholar
  5. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002) Google Scholar
  6. P. Müllner, V.A. Chernenko, M. Wollgarten, G. Kostorz, J. Appl. Phys. 92, 6708 (2002) Google Scholar
  7. G. Kostorz, P. Müllner, Z. f. Metallk. 96, 703 (2005) Google Scholar
  8. H.E. Karaca, I. Karaman, B. Basaran, Y.I. Chumlyakov, H.J. Maier, Acta Mater. 54, 233 (2006) Google Scholar
  9. T. Kakeshita, T. Fukuda, T. Takeuchi, Mat. Sci. Eng. A 438-440, 12 (2006) Google Scholar
  10. P. Müllner, D. Mukherji, M. Aguirre, R. Erni, G. Kostorz, Proc. Solid-to-Solid Phase Transform- ations in Inorganic Materials 2005' (PTM'05), Vol. 2 (TMS, Warrendale, PA, 2005), p. 171 Google Scholar
  11. H.H. Liebermann, C.D. Graham Jr., Acta Met. 25, 715 (1976) Google Scholar
  12. W.H. Wang et al., IEEE Trans. Magn. 37, 2715 (2001) Google Scholar
  13. P. Müllner, V.A. Chernenko, G. Kostorz, J. Appl. Phys. 95, 1531 (2004) Google Scholar
  14. P. Müllner, V.A. Chernenko, G. Kostorz, MRS Symp. Proc. 785 (Warrendal, PA, 2004), p. 415 Google Scholar
  15. P. Müllner, Z. Clark, L. Kenoyer, W.B. Knowlton, G. Kostorz, Mater. Sci. Eng. A (2007) [doi:10.1016/j.msea.2006.12.215] Google Scholar
  16. P. Müllner, Z. f. Metallk. 97, 205 (2006) Google Scholar
  17. Q. Pan, R.D. James, J. Appl. Phys. 87, 4702 (2000) Google Scholar
  18. P. Müllner, V.A. Chernenko, G. Kostorz, J. Magn. Magn. Mater. 267, 325 (2003) Google Scholar
  19. V.C. Solomon et al., Appl. Phys. Lett. 86, 192503 (2005) Google Scholar
  20. D.L. Schlagel, Y.L. Wu, W. Zhang, T.A. Lograsso, J. Alloys Comp. 312, 77 (2000) Google Scholar
  21. V.A. Chernenko, Scr. Mater. 40, 523 (1999) Google Scholar
  22. J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari, Mater. Sci. Eng. A 438, 931 (2006) Google Scholar
  23. P. Müllner, V.A. Chernenko, G. Kostorz, Mater. Sci. Eng. A 387, 965 (2004) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • M. Chmielus
    • 1
    • 2
  • V. A. Chernenko
    • 3
  • W. B. Knowlton
    • 1
    • 4
  • G. Kostorz
    • 5
  • P. Müllner
    • 1
  1. 1.Department of Materials Science and EngineeringBoise State UniversityBoiseUSA
  2. 2.Hahn-Meitner-InstitutBerlinGermany
  3. 3.Institute of MagnetismKievUkraine
  4. 4.Department of Electrical and Computer EngineeringBoise State UniversityBoiseUSA
  5. 5.ETH Zürich, Department of PhysicsZürichSwitzerland

Personalised recommendations