Advertisement

Mechanical properties of the nanocrystalline Ti49.4Ni50.6 alloy, produced by High Pressure Torsion

  • D. Gunderov
  • A. Lukyanov
  • E. Prokofiev
  • V. Pushin
Article

Abstract.

Nanocrystalline (NC) Ti49.4Ni50.6 alloy in the shape of a disc 20 mm in diameter has been successfully produced using high pressure torsion (HPT). The features of microstructure, martensitic transformation and deformation behavior of the NC alloy have been studied in details. The effects of the grain size on mechanical and functional properties of the alloy are discussed.

Keywords

Ultimate Tensile Strength Martensitic Transformation European Physical Journal Special Topic TiNi Equal Channel Angular Pressing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Otsuka, C.M. Wayman (eds.), Shape Memory Materials (Cambridge: Cambridge University Press, 1999), p. 284 Google Scholar
  2. V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu (eds.), Shape Memory Alloys Fundamentals, Modeling and Applications (Montreal: ETS Publ., 2003), p. 851 Google Scholar
  3. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000) Google Scholar
  4. R.Z. Valiev, Nature Mater. 3, 511 (2004) Google Scholar
  5. A.V. Sergueeva, C. Song, R.Z. Valiev, A.K. Mukherjee, Mater. Sci. Eng. A 339, 159 (2003) Google Scholar
  6. V.G. Pushin, R.Z. Valiev, Y.T. Zhu, S.D. Prokoshkin, D.V. Gunderov, L.I. Yurchenko, Proc. 3rd Int. Conf. on Nanomaterials by Severe Plastic Deformation, edited by Z. Horita (Trans. Tech. Publications Ltd., Switzerland, 2006), pp. 539–544 Google Scholar
  7. V.V. Stolyarov, E.A. Prokofyev, S.D. Prokoshkin, S.V. Dobatkin, I.B. Trubizina, I.Y. Khmelevskaya, V.G. Pushin, R.Z. Valiev, Phys. Met. Metallogr. 100, 608 (2005) Google Scholar
  8. A.V. Sharafutdinov, V.A. Shundakov, V.V. Latysh, R.Z. Valiev, I.N. Mikhailpv, FTVD J. 12, 76 (2002) Google Scholar
  9. Y.-H. Zhao, J.F. Bingert, X.-Z. Liao, B.-Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T. Zhu, Adv. Mater. 18, 2949 (2006) Google Scholar
  10. D.V. Gunderov, V.G. Pushin, E.A. Prokofiev, A.V. Lukianov, A.V. Poljakov, A.H. Uksusnikov, R.Z. Valiev, Phys. Techn. High Press. 17, 41 (2007) (in Russian) Google Scholar
  11. R.Z. Valiev, V.Yu. Gerztsman, O.A. Kaibyshev, Sh.Kh. Khannanov, Phys. Stat. Sol. (a) 77, 97 (1983) Google Scholar
  12. A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Scr. Metall. Mater. 24, 1929 (1990) Google Scholar
  13. T. Waitz, V. Kazyhanov, H.P. Karnthaler, Acta Mater. 52, 137 (2004) Google Scholar
  14. E. Ma, JOM 58, 49 (2006) Google Scholar
  15. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304, 422 (2004) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • D. Gunderov
    • 1
  • A. Lukyanov
    • 1
  • E. Prokofiev
    • 1
  • V. Pushin
    • 2
  1. 1.Institute of Physics of Advanced Materials, Ufa State Aviation Technical UniversityUfaRussia
  2. 2.Institute of Metal Physics, Ural Division of Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations