Nanocrystalline platinum layer deposited on NiTiCu shape memory strip

  • T. Goryczka
  • J. Lelatko
  • P. Ochin


The Ni25Ti50Cu25 shape memory strip was covered by thin nanocrystalline platinum layer. Structure of the layer was studied by means of X-ray diffraction and transmission electron microscopy. Transformation temperatures were determined using differential scanning calorymetry (DSC). The studies show that the layer reveals nanocrystalline structure with average crystalline size of 44 nm. Lattice distortion was relatively low –0.19%. Almost 25% of total grains are oriented along 〈111〉 direction. It was stated that the nanocrystalline platinum layer does not limit martensitic transformation in the covered strip, which reveals one step reversible martensitic transformation from the parent B2 phase to the orthorhombic martensite B19 phase. Also no influence of the layers on the shape recovery was noticed.


Martensitic Transformation Shape Memory Shape Memory Alloy European Physical Journal Special Topic Orientation Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.G. Machado, M.A. Savi, B.J. Med. Biol. Res. 36, 683 (2003) Google Scholar
  2. T. Duerig, A. Pelton, D. Stöckel, Mat. Sci. Eng. A 273-275, 149 (1999) Google Scholar
  3. N. Schiff, B. Grosgogeat, M. Lissac, F. Dalard, Biomat. 25, 4535 (2004) Google Scholar
  4. S.A. Shabalovskaya, Biomed. Mat. Eng. 12, 69 (2002) Google Scholar
  5. D. Starosvetsky, I. Gotman, Surf. Coat. Tech. 148, 268 (2001) Google Scholar
  6. J.H. Sui, W. Cai, Diam. Rel. Mat. 15, 1720 (2006) Google Scholar
  7. M.H. Wong, F.T. Cheng, H.C. Man, Scripta Mater. 56, 205 (2007) Google Scholar
  8. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J. Van Humbeeck, Biomat. 23, 4863 (2002) Google Scholar
  9. H. Morawiec, J. Lelatko, A. Winiarski, G. Stergioudis, T. Goryczka, P. Paczkowski, Biomat. Eng. 7, 33 (2004) Google Scholar
  10. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998) Google Scholar
  11. M. Es-Souni, M. Es-Souni, H. Fischer-Brandies, Biomat. 22, 2153 (2001) Google Scholar
  12. C.H. Craig, C.M. Friend, M.R. Edwards, L.A. Cornish, N.A. Gokcen, J. Alloy. Comp. 361, 187 (2003) Google Scholar
  13. G. Rondelli, B. Vicentini, Biomat. 23, 639 (2002) Google Scholar
  14. X. Wen, N. Hang, X. Li, Z. Gao, Biomed. Mat. Eng. 7, 1 (1997) Google Scholar
  15. A. Mohr, Ophthalm. 94, 600 (1997) Google Scholar
  16. E.Y.L. Yiu, D.T.S. Fang, F.C.S. Chu, T.W. Chow, J. Dent. 32, 423 (2004) Google Scholar
  17. T. Goryczka, P. Ochin, J. Mat. Proc. Tech. 162-163, 178 (2005) Google Scholar
  18. H.M. Rietveld, J. Appl. Cryst. 3, 65 (1996) Google Scholar
  19. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953) Google Scholar
  20. U.F. Kocks, Texture and Anisotropy (Cambridge University Press, Cambridge, 1998) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  • T. Goryczka
    • 1
  • J. Lelatko
    • 2
  • P. Ochin
    • 3
  1. 1.University of Silesia, Institute of Materials ScienceKatowicePoland
  2. 2.Academy of Sciences of the Czech Republic, Institute of PhysicsPrague 18221Czech Republic
  3. 3.ICMPE CNRS - Université Paris 12 (UMR 7182)Vitry-sur-SeineFrance

Personalised recommendations